K. Arun, P. Kalyani, Shaik Fouziya Samreen, Shereen
{"title":"吠陀除法:一种基于吠陀数学的反卷积算法设计","authors":"K. Arun, P. Kalyani, Shaik Fouziya Samreen, Shereen","doi":"10.1109/ICECCT56650.2023.10179813","DOIUrl":null,"url":null,"abstract":"Convolution and deconvolution are commonly employed in digital signal processing. Binary division is used in the field of digital image processing for image restoration, red-eye removal, and blur reduction via deconvolution operations. Long sequences must commonly undergo convolution and deconvolution comparable to DSP in many applications. The essential prerequisite for speed in any application is an increase in the speed of its fundamental building block. Both convolution and deconvolution have a central component known as a multiplier or divider. It is the most important component of the system, yet it is also the slowest and most time-consuming. Many approaches for increasing the multiplier and divider's speed have been explored, but the Vedic multiplier and divider are currently the focus of interest. Because it operates more swiftly and with less energy. In this work, the convolution and deconvolution modules are accelerated using Vedic multiplier and divider. Xilinx ISE 14.7 can be used to accomplish this division algorithm's operation. The suggested design is contrasted with current FPGA topologies, including the non-restoring division Algorithm and other Vedic Dividers (Paravartya Sutra, Nikhilam Sutra).","PeriodicalId":180790,"journal":{"name":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vedic Divider: A Novel Design for Deconvolution Algorithm based on Vedic Math\",\"authors\":\"K. Arun, P. Kalyani, Shaik Fouziya Samreen, Shereen\",\"doi\":\"10.1109/ICECCT56650.2023.10179813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution and deconvolution are commonly employed in digital signal processing. Binary division is used in the field of digital image processing for image restoration, red-eye removal, and blur reduction via deconvolution operations. Long sequences must commonly undergo convolution and deconvolution comparable to DSP in many applications. The essential prerequisite for speed in any application is an increase in the speed of its fundamental building block. Both convolution and deconvolution have a central component known as a multiplier or divider. It is the most important component of the system, yet it is also the slowest and most time-consuming. Many approaches for increasing the multiplier and divider's speed have been explored, but the Vedic multiplier and divider are currently the focus of interest. Because it operates more swiftly and with less energy. In this work, the convolution and deconvolution modules are accelerated using Vedic multiplier and divider. Xilinx ISE 14.7 can be used to accomplish this division algorithm's operation. The suggested design is contrasted with current FPGA topologies, including the non-restoring division Algorithm and other Vedic Dividers (Paravartya Sutra, Nikhilam Sutra).\",\"PeriodicalId\":180790,\"journal\":{\"name\":\"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCT56650.2023.10179813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Fifth International Conference on Electrical, Computer and Communication Technologies (ICECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCT56650.2023.10179813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
卷积和反卷积是数字信号处理中常用的两种方法。二值分割用于数字图像处理领域,通过反卷积操作实现图像恢复、红眼去除和模糊减少。在许多应用中,长序列通常必须经过与DSP相当的卷积和反卷积。在任何应用程序中,速度的基本先决条件是提高其基本构建块的速度。卷积和反卷积都有一个中心分量,称为乘法器或除法器。它是系统中最重要的组成部分,但也是最慢、最耗时的。人们已经探索了许多提高乘数法和分法器速度的方法,但吠陀乘数法和分法器是目前关注的焦点。因为它运行更快,耗能更少。在这项工作中,使用吠陀乘法器和除法器加速卷积和反卷积模块。Xilinx ISE 14.7可用于完成该除法算法的操作。建议的设计与当前的FPGA拓扑进行了对比,包括非恢复除法算法和其他吠陀除法(Paravartya Sutra, Nikhilam Sutra)。
Vedic Divider: A Novel Design for Deconvolution Algorithm based on Vedic Math
Convolution and deconvolution are commonly employed in digital signal processing. Binary division is used in the field of digital image processing for image restoration, red-eye removal, and blur reduction via deconvolution operations. Long sequences must commonly undergo convolution and deconvolution comparable to DSP in many applications. The essential prerequisite for speed in any application is an increase in the speed of its fundamental building block. Both convolution and deconvolution have a central component known as a multiplier or divider. It is the most important component of the system, yet it is also the slowest and most time-consuming. Many approaches for increasing the multiplier and divider's speed have been explored, but the Vedic multiplier and divider are currently the focus of interest. Because it operates more swiftly and with less energy. In this work, the convolution and deconvolution modules are accelerated using Vedic multiplier and divider. Xilinx ISE 14.7 can be used to accomplish this division algorithm's operation. The suggested design is contrasted with current FPGA topologies, including the non-restoring division Algorithm and other Vedic Dividers (Paravartya Sutra, Nikhilam Sutra).