利用彩色眼底图像自动分级糖尿病黄斑水肿的严重程度

K. S. Sreejini, V. Govindan
{"title":"利用彩色眼底图像自动分级糖尿病黄斑水肿的严重程度","authors":"K. S. Sreejini, V. Govindan","doi":"10.1109/ICACC.2013.42","DOIUrl":null,"url":null,"abstract":"Diabetic macular edema (DME) is the main reason for vision loss in diabetic patients and results in blurring in the vision and leads to vision loss if left untreated. In this work, we have proposed an automatic unsupervised method to classify severity of diabetic macular edema in color fundus images. Particle Swarm Optimization (PSO) algorithm is made use of for effective segmentation of exudates. Optic disc and fovea are detected employing mathematical morphology. Region of macula is marked by Early Treatment Diabetic Retinopathy Studies (ETDRS) grading scale. Severity of disease such as normal, stage 1 or stage 2 of diabetic macular edema is detected by the location of exudates. The proposed method is evaluated using 100 images of public ally available MESSIDOR database and performance figures of 82.5% for sensitivity, 100% for specificity and 93% for accuracy are obtained.","PeriodicalId":109537,"journal":{"name":"2013 Third International Conference on Advances in Computing and Communications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Automatic Grading of Severity of Diabetic Macular Edema Using Color Fundus Images\",\"authors\":\"K. S. Sreejini, V. Govindan\",\"doi\":\"10.1109/ICACC.2013.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic macular edema (DME) is the main reason for vision loss in diabetic patients and results in blurring in the vision and leads to vision loss if left untreated. In this work, we have proposed an automatic unsupervised method to classify severity of diabetic macular edema in color fundus images. Particle Swarm Optimization (PSO) algorithm is made use of for effective segmentation of exudates. Optic disc and fovea are detected employing mathematical morphology. Region of macula is marked by Early Treatment Diabetic Retinopathy Studies (ETDRS) grading scale. Severity of disease such as normal, stage 1 or stage 2 of diabetic macular edema is detected by the location of exudates. The proposed method is evaluated using 100 images of public ally available MESSIDOR database and performance figures of 82.5% for sensitivity, 100% for specificity and 93% for accuracy are obtained.\",\"PeriodicalId\":109537,\"journal\":{\"name\":\"2013 Third International Conference on Advances in Computing and Communications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Third International Conference on Advances in Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACC.2013.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third International Conference on Advances in Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACC.2013.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

糖尿病性黄斑水肿(Diabetic macular edema, DME)是糖尿病患者视力下降的主要原因,如果不及时治疗,会导致视力模糊,最终导致视力下降。在这项工作中,我们提出了一种自动无监督的方法来分类彩色眼底图像中糖尿病黄斑水肿的严重程度。粒子群优化(PSO)算法是利用渗出液的有效分割。利用数学形态学检测视盘和中央窝。黄斑区域用早期治疗糖尿病视网膜病变研究(ETDRS)分级量表进行标记。疾病的严重程度,如糖尿病性黄斑水肿的正常、1期或2期是通过渗出物的位置来检测的。使用公开的MESSIDOR数据库的100张图像对所提出的方法进行了评估,获得了82.5%的灵敏度,100%的特异性和93%的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Grading of Severity of Diabetic Macular Edema Using Color Fundus Images
Diabetic macular edema (DME) is the main reason for vision loss in diabetic patients and results in blurring in the vision and leads to vision loss if left untreated. In this work, we have proposed an automatic unsupervised method to classify severity of diabetic macular edema in color fundus images. Particle Swarm Optimization (PSO) algorithm is made use of for effective segmentation of exudates. Optic disc and fovea are detected employing mathematical morphology. Region of macula is marked by Early Treatment Diabetic Retinopathy Studies (ETDRS) grading scale. Severity of disease such as normal, stage 1 or stage 2 of diabetic macular edema is detected by the location of exudates. The proposed method is evaluated using 100 images of public ally available MESSIDOR database and performance figures of 82.5% for sensitivity, 100% for specificity and 93% for accuracy are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信