验证一个减法根号-2平方根算法和实现

M. Leeser, J. O'Leary
{"title":"验证一个减法根号-2平方根算法和实现","authors":"M. Leeser, J. O'Leary","doi":"10.1109/ICCD.1995.528918","DOIUrl":null,"url":null,"abstract":"Many modern microprocessors implement floating point square root hardware using subtractive algorithms. Such processors include the HP PA7200, the MIPS R4400, and the Intel Pentium. The Intel Pentium division bug highlights the importance of verifying such implementations. In this paper we discuss the verification of a radix-2 square root unit similar to that used in the MIPS R4400. The verification is done by theorem proving to bridge the gap between the algorithm and the implementation. At the top level, we verify that a subtractive, non-restoring algorithm correctly calculates the square root function. We then show a series of optimizing transformations that refine the top level algorithm into the hardware implementation. Each transformation can be verified. We show the transformation of the top level proof to a level that is closer to the hardware implementation. The implementation is at the RTL level, and consists of a structural description of the hardware including an adder/subtracter, simple combinational hardware and some registers.","PeriodicalId":281907,"journal":{"name":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","volume":"70 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Verification of a subtractive radix-2 square root algorithm and implementation\",\"authors\":\"M. Leeser, J. O'Leary\",\"doi\":\"10.1109/ICCD.1995.528918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many modern microprocessors implement floating point square root hardware using subtractive algorithms. Such processors include the HP PA7200, the MIPS R4400, and the Intel Pentium. The Intel Pentium division bug highlights the importance of verifying such implementations. In this paper we discuss the verification of a radix-2 square root unit similar to that used in the MIPS R4400. The verification is done by theorem proving to bridge the gap between the algorithm and the implementation. At the top level, we verify that a subtractive, non-restoring algorithm correctly calculates the square root function. We then show a series of optimizing transformations that refine the top level algorithm into the hardware implementation. Each transformation can be verified. We show the transformation of the top level proof to a level that is closer to the hardware implementation. The implementation is at the RTL level, and consists of a structural description of the hardware including an adder/subtracter, simple combinational hardware and some registers.\",\"PeriodicalId\":281907,\"journal\":{\"name\":\"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors\",\"volume\":\"70 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.1995.528918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1995.528918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

许多现代微处理器使用减法算法实现浮点平方根硬件。这类处理器包括HP PA7200、MIPS R4400和Intel Pentium。英特尔奔腾分部的错误凸显了验证此类实现的重要性。本文讨论了类似于MIPS R4400中使用的根-2平方根单位的验证。验证是通过定理证明来完成的,以弥合算法与实现之间的差距。在顶层,我们验证一个减法的、非恢复的算法是否正确地计算了平方根函数。然后,我们将展示一系列优化转换,这些转换将顶级算法细化为硬件实现。每个转换都可以被验证。我们展示了将顶级证明转换为更接近硬件实现的级别。该实现是在RTL级别,由硬件的结构描述组成,包括加/减法器、简单的组合硬件和一些寄存器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of a subtractive radix-2 square root algorithm and implementation
Many modern microprocessors implement floating point square root hardware using subtractive algorithms. Such processors include the HP PA7200, the MIPS R4400, and the Intel Pentium. The Intel Pentium division bug highlights the importance of verifying such implementations. In this paper we discuss the verification of a radix-2 square root unit similar to that used in the MIPS R4400. The verification is done by theorem proving to bridge the gap between the algorithm and the implementation. At the top level, we verify that a subtractive, non-restoring algorithm correctly calculates the square root function. We then show a series of optimizing transformations that refine the top level algorithm into the hardware implementation. Each transformation can be verified. We show the transformation of the top level proof to a level that is closer to the hardware implementation. The implementation is at the RTL level, and consists of a structural description of the hardware including an adder/subtracter, simple combinational hardware and some registers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信