改进WaldBoost算法,提高电力系统技术诊断问题的求解效率

A. Chesalin, S. Grodzenskiy
{"title":"改进WaldBoost算法,提高电力系统技术诊断问题的求解效率","authors":"A. Chesalin, S. Grodzenskiy","doi":"10.1109/ICOECS46375.2019.8950002","DOIUrl":null,"url":null,"abstract":"In this paper we study the modifications of the adaptive boosting algorithm to solve a wide class of technical diagnostic problems of electrical systems. The implementation of the WaldBoost algorithm is considered, and its modification is proposed, which allows to significantly reduce the number of weak classifiers to achieve a given classification accuracy. The efficiency of the proposed algorithm is shown by specific examples.","PeriodicalId":371743,"journal":{"name":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)","volume":"436 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of the WaldBoost algorithm to improve the efficiency of solving problems of technical diagnostics of electrical systems\",\"authors\":\"A. Chesalin, S. Grodzenskiy\",\"doi\":\"10.1109/ICOECS46375.2019.8950002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the modifications of the adaptive boosting algorithm to solve a wide class of technical diagnostic problems of electrical systems. The implementation of the WaldBoost algorithm is considered, and its modification is proposed, which allows to significantly reduce the number of weak classifiers to achieve a given classification accuracy. The efficiency of the proposed algorithm is shown by specific examples.\",\"PeriodicalId\":371743,\"journal\":{\"name\":\"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)\",\"volume\":\"436 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOECS46375.2019.8950002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrotechnical Complexes and Systems (ICOECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOECS46375.2019.8950002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了对自适应增强算法的改进,以解决电气系统中广泛的技术诊断问题。考虑了WaldBoost算法的实现,并对其进行了改进,使弱分类器的数量显著减少,从而达到给定的分类精度。具体算例表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modification of the WaldBoost algorithm to improve the efficiency of solving problems of technical diagnostics of electrical systems
In this paper we study the modifications of the adaptive boosting algorithm to solve a wide class of technical diagnostic problems of electrical systems. The implementation of the WaldBoost algorithm is considered, and its modification is proposed, which allows to significantly reduce the number of weak classifiers to achieve a given classification accuracy. The efficiency of the proposed algorithm is shown by specific examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信