考虑键合失败概率和成本的3d堆叠集成电路的优化堆叠顺序

Chang Hao, Huaguo Liang, Li Yang, Yiming Ouyang
{"title":"考虑键合失败概率和成本的3d堆叠集成电路的优化堆叠顺序","authors":"Chang Hao, Huaguo Liang, Li Yang, Yiming Ouyang","doi":"10.1109/VLSI-DAT.2014.6834877","DOIUrl":null,"url":null,"abstract":"One notable difference between 3D test flow and 2D test flow mainly lies in the mid-bond test, in which the stacking yield can be further enhanced through optimized bonding arrangement. In contrast to the existing sequential stacking, this paper proposes a novel rearranged stacking scheme which estimates the probability and cost of failed bonding in each stacking step and optimizes the mid-bond order to screen out the failed component as early as possible. The effect of the rearranged stacking has been extensively analyzed using the yield model and cost model of 3D-SICs considering different process parameters such as die yield, stacking size, failure rate and redundancy degree of TSVs. Experimental results demonstrate that the proposed rearranged stacking method is only a half of the sequential stacking in terms of failed area ratio (FAR).","PeriodicalId":267124,"journal":{"name":"Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimized stacking order for 3D-stacked ICs considering the probability and cost of failed bonding\",\"authors\":\"Chang Hao, Huaguo Liang, Li Yang, Yiming Ouyang\",\"doi\":\"10.1109/VLSI-DAT.2014.6834877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One notable difference between 3D test flow and 2D test flow mainly lies in the mid-bond test, in which the stacking yield can be further enhanced through optimized bonding arrangement. In contrast to the existing sequential stacking, this paper proposes a novel rearranged stacking scheme which estimates the probability and cost of failed bonding in each stacking step and optimizes the mid-bond order to screen out the failed component as early as possible. The effect of the rearranged stacking has been extensively analyzed using the yield model and cost model of 3D-SICs considering different process parameters such as die yield, stacking size, failure rate and redundancy degree of TSVs. Experimental results demonstrate that the proposed rearranged stacking method is only a half of the sequential stacking in terms of failed area ratio (FAR).\",\"PeriodicalId\":267124,\"journal\":{\"name\":\"Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-DAT.2014.6834877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Papers of 2014 International Symposium on VLSI Design, Automation and Test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2014.6834877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

三维测试流程与二维测试流程的显著区别主要在于中键测试,通过优化键合排列可以进一步提高叠层屈服率。与现有的顺序堆叠方法相比,本文提出了一种新的重排堆叠方案,该方案估计每个堆叠步骤中键合失败的概率和代价,并优化中间键的顺序,以尽早筛选出失败的组件。利用3d - sic的成品率模型和成本模型,考虑不同的工艺参数,如模具成品率、堆垛尺寸、故障率和冗余度,对重排堆垛的影响进行了广泛的分析。实验结果表明,所提出的重排叠加方法在失效面积比(FAR)方面仅为顺序叠加方法的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized stacking order for 3D-stacked ICs considering the probability and cost of failed bonding
One notable difference between 3D test flow and 2D test flow mainly lies in the mid-bond test, in which the stacking yield can be further enhanced through optimized bonding arrangement. In contrast to the existing sequential stacking, this paper proposes a novel rearranged stacking scheme which estimates the probability and cost of failed bonding in each stacking step and optimizes the mid-bond order to screen out the failed component as early as possible. The effect of the rearranged stacking has been extensively analyzed using the yield model and cost model of 3D-SICs considering different process parameters such as die yield, stacking size, failure rate and redundancy degree of TSVs. Experimental results demonstrate that the proposed rearranged stacking method is only a half of the sequential stacking in terms of failed area ratio (FAR).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信