Lukasiewicz逻辑函数的充分必要条件

N. Takagi, K. Nakashima, M. Mukaidono
{"title":"Lukasiewicz逻辑函数的充分必要条件","authors":"N. Takagi, K. Nakashima, M. Mukaidono","doi":"10.1109/ISMVL.1996.508333","DOIUrl":null,"url":null,"abstract":"The literal, TSUM, min and max operations employed in multiple-valued logic design can be expressed in terms of the implication and the negation of Lukasiewicz logic. We can easily show that the set of multiple-valued functions composed of the above four operations and the negation is equivalent to the set of all multiple-valued functions composed of the Lukasiewicz implication and the negation. This implies that from the viewpoint of the multiple-valued logic design, Lukasiewicz multiple-valued logic is a fundamental system. In this paper, we clarify a necessary and sufficient condition for a multiple-valued function to be a Lukasiewicz logic function, which is defined as a function in terms of the Lukasiewicz implication and the negation.","PeriodicalId":403347,"journal":{"name":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A necessary and sufficient condition for Lukasiewicz logic functions\",\"authors\":\"N. Takagi, K. Nakashima, M. Mukaidono\",\"doi\":\"10.1109/ISMVL.1996.508333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The literal, TSUM, min and max operations employed in multiple-valued logic design can be expressed in terms of the implication and the negation of Lukasiewicz logic. We can easily show that the set of multiple-valued functions composed of the above four operations and the negation is equivalent to the set of all multiple-valued functions composed of the Lukasiewicz implication and the negation. This implies that from the viewpoint of the multiple-valued logic design, Lukasiewicz multiple-valued logic is a fundamental system. In this paper, we clarify a necessary and sufficient condition for a multiple-valued function to be a Lukasiewicz logic function, which is defined as a function in terms of the Lukasiewicz implication and the negation.\",\"PeriodicalId\":403347,\"journal\":{\"name\":\"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1996.508333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1996.508333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多值逻辑设计中使用的文字、TSUM、最小和最大运算可以用Lukasiewicz逻辑的蕴涵和否定来表示。我们可以很容易地证明,由上述四种操作和否定组成的多值函数集等价于由Lukasiewicz蕴涵和否定组成的所有多值函数集。这意味着从多值逻辑设计的角度来看,Lukasiewicz多值逻辑是一个基本的系统。本文给出了多值函数是Lukasiewicz逻辑函数的一个充要条件,并根据Lukasiewicz蕴涵和Lukasiewicz逻辑函数的否定将其定义为函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A necessary and sufficient condition for Lukasiewicz logic functions
The literal, TSUM, min and max operations employed in multiple-valued logic design can be expressed in terms of the implication and the negation of Lukasiewicz logic. We can easily show that the set of multiple-valued functions composed of the above four operations and the negation is equivalent to the set of all multiple-valued functions composed of the Lukasiewicz implication and the negation. This implies that from the viewpoint of the multiple-valued logic design, Lukasiewicz multiple-valued logic is a fundamental system. In this paper, we clarify a necessary and sufficient condition for a multiple-valued function to be a Lukasiewicz logic function, which is defined as a function in terms of the Lukasiewicz implication and the negation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信