Wei Zhao, S. Chakravarty, Junxia Ma, Narendra Devta-Prasanna, Fan Yang, M. Tehranipoor
{"title":"一种快速识别试验中峰值电流的新方法","authors":"Wei Zhao, S. Chakravarty, Junxia Ma, Narendra Devta-Prasanna, Fan Yang, M. Tehranipoor","doi":"10.1109/VTS.2012.6231101","DOIUrl":null,"url":null,"abstract":"Existing commercial power sign-off tools analyze the functional mode of operation for a small time window. The detailed analysis used makes such tools impractical in determining test peak power where a large amount of scan shift cycles have to be analyzed. This paper proposes an approximate test peak power analysis flow capable of computing test peak power at each power bump in the design. The flow uses physical design information, like power grid, power bump location, packaging information, along with the design netlist. We present correlation studies, on industrial design, and show the proposed flow to correlate within 5%of the accurate commercial power sign-off tool. In addition, we demonstrate that this flow, unlike the commercial power sign-off tool, can process a very large number of transition delay tests in a reasonable time.","PeriodicalId":169611,"journal":{"name":"2012 IEEE 30th VLSI Test Symposium (VTS)","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel method for fast identification of peak current during test\",\"authors\":\"Wei Zhao, S. Chakravarty, Junxia Ma, Narendra Devta-Prasanna, Fan Yang, M. Tehranipoor\",\"doi\":\"10.1109/VTS.2012.6231101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing commercial power sign-off tools analyze the functional mode of operation for a small time window. The detailed analysis used makes such tools impractical in determining test peak power where a large amount of scan shift cycles have to be analyzed. This paper proposes an approximate test peak power analysis flow capable of computing test peak power at each power bump in the design. The flow uses physical design information, like power grid, power bump location, packaging information, along with the design netlist. We present correlation studies, on industrial design, and show the proposed flow to correlate within 5%of the accurate commercial power sign-off tool. In addition, we demonstrate that this flow, unlike the commercial power sign-off tool, can process a very large number of transition delay tests in a reasonable time.\",\"PeriodicalId\":169611,\"journal\":{\"name\":\"2012 IEEE 30th VLSI Test Symposium (VTS)\",\"volume\":\"231 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 30th VLSI Test Symposium (VTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2012.6231101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 30th VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2012.6231101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel method for fast identification of peak current during test
Existing commercial power sign-off tools analyze the functional mode of operation for a small time window. The detailed analysis used makes such tools impractical in determining test peak power where a large amount of scan shift cycles have to be analyzed. This paper proposes an approximate test peak power analysis flow capable of computing test peak power at each power bump in the design. The flow uses physical design information, like power grid, power bump location, packaging information, along with the design netlist. We present correlation studies, on industrial design, and show the proposed flow to correlate within 5%of the accurate commercial power sign-off tool. In addition, we demonstrate that this flow, unlike the commercial power sign-off tool, can process a very large number of transition delay tests in a reasonable time.