联合图像分离和字典学习

Xiaochen Zhao, Guangyu Zhou, Wei Dai, Tao Xu, Wenwu Wang
{"title":"联合图像分离和字典学习","authors":"Xiaochen Zhao, Guangyu Zhou, Wei Dai, Tao Xu, Wenwu Wang","doi":"10.1109/ICDSP.2013.6622730","DOIUrl":null,"url":null,"abstract":"Blind source separation (BSS) aims to estimate unknown sources from their mixtures. Methods to address this include the benchmark ICA, SCA, MMCA, and more recently, a dictionary learning based algorithm BMMCA. In this paper, we solve the separation problem by using the recently proposed SimCO optimization framework. Our approach not only allows to unify the two sub-problems emerging in the separation problem, but also mitigates the singularity issue which was reported in the dictionary learning literature. Another unique feature is that only one dictionary is used to sparsely represent the source signals while in the literature typically multiple dictionaries are assumed (one dictionary per source). Numerical experiments are performed and the results show that our scheme significantly improves the performance, especially in terms of the accuracy of the mixing matrix estimation.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Joint image separation and dictionary learning\",\"authors\":\"Xiaochen Zhao, Guangyu Zhou, Wei Dai, Tao Xu, Wenwu Wang\",\"doi\":\"10.1109/ICDSP.2013.6622730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blind source separation (BSS) aims to estimate unknown sources from their mixtures. Methods to address this include the benchmark ICA, SCA, MMCA, and more recently, a dictionary learning based algorithm BMMCA. In this paper, we solve the separation problem by using the recently proposed SimCO optimization framework. Our approach not only allows to unify the two sub-problems emerging in the separation problem, but also mitigates the singularity issue which was reported in the dictionary learning literature. Another unique feature is that only one dictionary is used to sparsely represent the source signals while in the literature typically multiple dictionaries are assumed (one dictionary per source). Numerical experiments are performed and the results show that our scheme significantly improves the performance, especially in terms of the accuracy of the mixing matrix estimation.\",\"PeriodicalId\":180360,\"journal\":{\"name\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2013.6622730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

盲源分离(BSS)的目的是从混合源中估计未知源。解决这个问题的方法包括基准ICA、SCA、MMCA,以及最近基于字典学习的算法BMMCA。在本文中,我们使用最近提出的SimCO优化框架来解决分离问题。我们的方法不仅可以统一分离问题中出现的两个子问题,而且可以缓解字典学习文献中报道的奇点问题。另一个独特的特性是只使用一个字典来稀疏地表示源信号,而在文献中通常假设多个字典(每个源一个字典)。数值实验结果表明,该方案显著提高了混合矩阵估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint image separation and dictionary learning
Blind source separation (BSS) aims to estimate unknown sources from their mixtures. Methods to address this include the benchmark ICA, SCA, MMCA, and more recently, a dictionary learning based algorithm BMMCA. In this paper, we solve the separation problem by using the recently proposed SimCO optimization framework. Our approach not only allows to unify the two sub-problems emerging in the separation problem, but also mitigates the singularity issue which was reported in the dictionary learning literature. Another unique feature is that only one dictionary is used to sparsely represent the source signals while in the literature typically multiple dictionaries are assumed (one dictionary per source). Numerical experiments are performed and the results show that our scheme significantly improves the performance, especially in terms of the accuracy of the mixing matrix estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信