{"title":"标签推荐的图形摘要","authors":"Mohammed Al-Dhelaan, Hadel Alhawasi","doi":"10.1109/FiCloud.2015.61","DOIUrl":null,"url":null,"abstract":"Hash tag recommendation is the problem of finding interesting hash tags for a user, which are not easily found via Twitter search. Searching a hash tag simply shows a list of tweets, each contains the query hash tag string. To find even more relevant hash tags, we propose to use a graph-based approach to find similar hash tags by using the social network graph around hash tags. We start by using a heterogeneous social graph that contains users, tweets, and hash tags, then we summarize the graph to a hash tag graph that shows the similarity between different hash tags. Finally, we rank the vertices in respect to a query hash tag using a random walk with restart and a content similarity measure. The experimental work demonstrates the effectiveness of our approach compared to baselines.","PeriodicalId":182204,"journal":{"name":"2015 3rd International Conference on Future Internet of Things and Cloud","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Graph Summarization for Hashtag Recommendation\",\"authors\":\"Mohammed Al-Dhelaan, Hadel Alhawasi\",\"doi\":\"10.1109/FiCloud.2015.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hash tag recommendation is the problem of finding interesting hash tags for a user, which are not easily found via Twitter search. Searching a hash tag simply shows a list of tweets, each contains the query hash tag string. To find even more relevant hash tags, we propose to use a graph-based approach to find similar hash tags by using the social network graph around hash tags. We start by using a heterogeneous social graph that contains users, tweets, and hash tags, then we summarize the graph to a hash tag graph that shows the similarity between different hash tags. Finally, we rank the vertices in respect to a query hash tag using a random walk with restart and a content similarity measure. The experimental work demonstrates the effectiveness of our approach compared to baselines.\",\"PeriodicalId\":182204,\"journal\":{\"name\":\"2015 3rd International Conference on Future Internet of Things and Cloud\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Future Internet of Things and Cloud\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud.2015.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Future Internet of Things and Cloud","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2015.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hash tag recommendation is the problem of finding interesting hash tags for a user, which are not easily found via Twitter search. Searching a hash tag simply shows a list of tweets, each contains the query hash tag string. To find even more relevant hash tags, we propose to use a graph-based approach to find similar hash tags by using the social network graph around hash tags. We start by using a heterogeneous social graph that contains users, tweets, and hash tags, then we summarize the graph to a hash tag graph that shows the similarity between different hash tags. Finally, we rank the vertices in respect to a query hash tag using a random walk with restart and a content similarity measure. The experimental work demonstrates the effectiveness of our approach compared to baselines.