标签推荐的图形摘要

Mohammed Al-Dhelaan, Hadel Alhawasi
{"title":"标签推荐的图形摘要","authors":"Mohammed Al-Dhelaan, Hadel Alhawasi","doi":"10.1109/FiCloud.2015.61","DOIUrl":null,"url":null,"abstract":"Hash tag recommendation is the problem of finding interesting hash tags for a user, which are not easily found via Twitter search. Searching a hash tag simply shows a list of tweets, each contains the query hash tag string. To find even more relevant hash tags, we propose to use a graph-based approach to find similar hash tags by using the social network graph around hash tags. We start by using a heterogeneous social graph that contains users, tweets, and hash tags, then we summarize the graph to a hash tag graph that shows the similarity between different hash tags. Finally, we rank the vertices in respect to a query hash tag using a random walk with restart and a content similarity measure. The experimental work demonstrates the effectiveness of our approach compared to baselines.","PeriodicalId":182204,"journal":{"name":"2015 3rd International Conference on Future Internet of Things and Cloud","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Graph Summarization for Hashtag Recommendation\",\"authors\":\"Mohammed Al-Dhelaan, Hadel Alhawasi\",\"doi\":\"10.1109/FiCloud.2015.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hash tag recommendation is the problem of finding interesting hash tags for a user, which are not easily found via Twitter search. Searching a hash tag simply shows a list of tweets, each contains the query hash tag string. To find even more relevant hash tags, we propose to use a graph-based approach to find similar hash tags by using the social network graph around hash tags. We start by using a heterogeneous social graph that contains users, tweets, and hash tags, then we summarize the graph to a hash tag graph that shows the similarity between different hash tags. Finally, we rank the vertices in respect to a query hash tag using a random walk with restart and a content similarity measure. The experimental work demonstrates the effectiveness of our approach compared to baselines.\",\"PeriodicalId\":182204,\"journal\":{\"name\":\"2015 3rd International Conference on Future Internet of Things and Cloud\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Future Internet of Things and Cloud\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud.2015.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Future Internet of Things and Cloud","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2015.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

散列标签推荐是为用户找到有趣的散列标签的问题,这些标签不容易通过Twitter搜索找到。搜索散列标签只是显示tweet列表,每个tweet包含查询散列标签字符串。为了找到更多相关的哈希标签,我们建议使用基于图的方法,通过使用哈希标签周围的社交网络图来找到类似的哈希标签。我们首先使用包含用户、tweet和散列标签的异构社交图,然后将该图总结为一个散列标签图,该图显示了不同散列标签之间的相似性。最后,我们使用带重启的随机漫步和内容相似性度量对查询哈希标签的顶点进行排序。实验工作表明,与基线相比,我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Summarization for Hashtag Recommendation
Hash tag recommendation is the problem of finding interesting hash tags for a user, which are not easily found via Twitter search. Searching a hash tag simply shows a list of tweets, each contains the query hash tag string. To find even more relevant hash tags, we propose to use a graph-based approach to find similar hash tags by using the social network graph around hash tags. We start by using a heterogeneous social graph that contains users, tweets, and hash tags, then we summarize the graph to a hash tag graph that shows the similarity between different hash tags. Finally, we rank the vertices in respect to a query hash tag using a random walk with restart and a content similarity measure. The experimental work demonstrates the effectiveness of our approach compared to baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信