基于后处理监督神经网络的化学场效应晶体管响应

W. Abdullah, M. Othman, Mohd Alaudin Mohd Ali
{"title":"基于后处理监督神经网络的化学场效应晶体管响应","authors":"W. Abdullah, M. Othman, Mohd Alaudin Mohd Ali","doi":"10.1109/SoCPaR.2009.58","DOIUrl":null,"url":null,"abstract":"This work presents the classification of potassium ion concentration in the presence of interfering ammonium ions from Chemical Field-Effect Transistor (CHEMFET) sensors involving neural network post-processing stage. Data collection for the purpose of supervised learning training data is obtained from sample solutions prepared by keeping the main ion concentration constant while the activity of the interfering ions based on the fixed interference method. The measurement setup includes a readout interface circuit that ensures constant-current constant-voltage across the drain-source for isothermal point operation. The training algorithm is back-propagation with generalized delta rule on a multilayer feed-forward network. Activation function based on the MOSFET drain current equation in the linear region is attempted in the hidden layer. Using function fitting approach, the network aims to find the potassium ion concentration despite the presence of interfering ion, without having to estimate device and chemically related parameters that would otherwise require further experiments.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"65 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Chemical Field Effect Transistor Response with Post Processing Supervised Neural Network\",\"authors\":\"W. Abdullah, M. Othman, Mohd Alaudin Mohd Ali\",\"doi\":\"10.1109/SoCPaR.2009.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the classification of potassium ion concentration in the presence of interfering ammonium ions from Chemical Field-Effect Transistor (CHEMFET) sensors involving neural network post-processing stage. Data collection for the purpose of supervised learning training data is obtained from sample solutions prepared by keeping the main ion concentration constant while the activity of the interfering ions based on the fixed interference method. The measurement setup includes a readout interface circuit that ensures constant-current constant-voltage across the drain-source for isothermal point operation. The training algorithm is back-propagation with generalized delta rule on a multilayer feed-forward network. Activation function based on the MOSFET drain current equation in the linear region is attempted in the hidden layer. Using function fitting approach, the network aims to find the potassium ion concentration despite the presence of interfering ion, without having to estimate device and chemically related parameters that would otherwise require further experiments.\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"65 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SoCPaR.2009.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SoCPaR.2009.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了化学场效应晶体管(CHEMFET)传感器在干扰铵离子存在下钾离子浓度的分类,涉及神经网络后处理阶段。以监督学习训练数据为目的的数据采集,采用固定干扰法,主离子浓度保持不变,干扰离子活度不变,得到样品溶液。测量装置包括一个读出接口电路,确保在漏源处恒流恒压,实现等温点操作。训练算法是在多层前馈网络上采用广义delta规则的反向传播算法。在隐藏层中尝试了基于线性区漏极电流方程的激活函数。使用函数拟合方法,该网络的目的是在存在干扰离子的情况下找到钾离子浓度,而无需估计设备和化学相关参数,否则需要进一步的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical Field Effect Transistor Response with Post Processing Supervised Neural Network
This work presents the classification of potassium ion concentration in the presence of interfering ammonium ions from Chemical Field-Effect Transistor (CHEMFET) sensors involving neural network post-processing stage. Data collection for the purpose of supervised learning training data is obtained from sample solutions prepared by keeping the main ion concentration constant while the activity of the interfering ions based on the fixed interference method. The measurement setup includes a readout interface circuit that ensures constant-current constant-voltage across the drain-source for isothermal point operation. The training algorithm is back-propagation with generalized delta rule on a multilayer feed-forward network. Activation function based on the MOSFET drain current equation in the linear region is attempted in the hidden layer. Using function fitting approach, the network aims to find the potassium ion concentration despite the presence of interfering ion, without having to estimate device and chemically related parameters that would otherwise require further experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信