使用遗传算法的热感知地板规划

W. Hung, Yuan Xie, N. Vijaykrishnan, Charles Addo-Quaye, T. Theocharides, M. J. Irwin
{"title":"使用遗传算法的热感知地板规划","authors":"W. Hung, Yuan Xie, N. Vijaykrishnan, Charles Addo-Quaye, T. Theocharides, M. J. Irwin","doi":"10.1109/ISQED.2005.122","DOIUrl":null,"url":null,"abstract":"In this work, we present a genetic algorithm based thermal-aware floorplanning framework that aims at reducing hot spots and distributing temperature evenly across a chip while optimizing the traditional design metric, chip area. The floorplanning problem is formulated as a genetic algorithm problem, and a tool called HotSpot is used to calculate floorplanning temperature based on the power dissipation, the physical dimension, and the location of modules. Area and/or temperature optimizations guide the genetic algorithm to generate the final fittest solution. The experimental results using MCNC benchmarks and a face detection chip show that our combined area and thermal optimization technique decreases the peak temperature sufficiently while providing floorplans that are as compact as the traditional area-oriented techniques.","PeriodicalId":333840,"journal":{"name":"Sixth international symposium on quality electronic design (isqed'05)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":"{\"title\":\"Thermal-aware floorplanning using genetic algorithms\",\"authors\":\"W. Hung, Yuan Xie, N. Vijaykrishnan, Charles Addo-Quaye, T. Theocharides, M. J. Irwin\",\"doi\":\"10.1109/ISQED.2005.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a genetic algorithm based thermal-aware floorplanning framework that aims at reducing hot spots and distributing temperature evenly across a chip while optimizing the traditional design metric, chip area. The floorplanning problem is formulated as a genetic algorithm problem, and a tool called HotSpot is used to calculate floorplanning temperature based on the power dissipation, the physical dimension, and the location of modules. Area and/or temperature optimizations guide the genetic algorithm to generate the final fittest solution. The experimental results using MCNC benchmarks and a face detection chip show that our combined area and thermal optimization technique decreases the peak temperature sufficiently while providing floorplans that are as compact as the traditional area-oriented techniques.\",\"PeriodicalId\":333840,\"journal\":{\"name\":\"Sixth international symposium on quality electronic design (isqed'05)\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth international symposium on quality electronic design (isqed'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2005.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth international symposium on quality electronic design (isqed'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2005.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 121

摘要

在这项工作中,我们提出了一种基于遗传算法的热感知地板规划框架,旨在减少热点并在芯片上均匀分布温度,同时优化传统的设计度量,芯片面积。地板规划问题是一个遗传算法问题,并使用HotSpot工具根据功耗、物理尺寸和模块位置计算地板规划温度。区域和/或温度优化指导遗传算法产生最终的最适合的解决方案。使用MCNC基准测试和人脸检测芯片的实验结果表明,我们的组合面积和热优化技术充分降低了峰值温度,同时提供了与传统面向面积技术一样紧凑的平面图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal-aware floorplanning using genetic algorithms
In this work, we present a genetic algorithm based thermal-aware floorplanning framework that aims at reducing hot spots and distributing temperature evenly across a chip while optimizing the traditional design metric, chip area. The floorplanning problem is formulated as a genetic algorithm problem, and a tool called HotSpot is used to calculate floorplanning temperature based on the power dissipation, the physical dimension, and the location of modules. Area and/or temperature optimizations guide the genetic algorithm to generate the final fittest solution. The experimental results using MCNC benchmarks and a face detection chip show that our combined area and thermal optimization technique decreases the peak temperature sufficiently while providing floorplans that are as compact as the traditional area-oriented techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信