直径15nm的InAs纳米线mosfet

A. Dey, C. Thelander, M. Borgstrom, B. Borg, E. Lind, L. Wernersson
{"title":"直径15nm的InAs纳米线mosfet","authors":"A. Dey, C. Thelander, M. Borgstrom, B. Borg, E. Lind, L. Wernersson","doi":"10.1109/DRC.2011.5994403","DOIUrl":null,"url":null,"abstract":"InAs is an attractive channel material for III–V nanowire MOSFETs and early prototype high performance nanowire transistors have been demonstrated1. As the gate length is reduced, the nanowire diameter must be scaled quite aggressively in order to suppress short-channel effects2. However, a reduction in transconductance (gm) and drive current (ION) could be expected due to increased surface scattering for thin wires. We present data for the device properties of thin InAs nanowires, with diameters in the 15 nm range, and investigate possible improvements of the performance focusing on transistor applications. In order to boost ION, the source and drain resistance need to be reduced. Several doping sources were therefore evaluated in the study, among them selenium (Se), tin (Sn) and sulphur (S) to form n-i-n structures. We report very high current densities, up to 33 MA/cm2, comparable to modern HEMTs3, and a normalized transconductance of 1.8 S/mm for a nanowire with an intrinsic segment of nominally 150 nm and a diameter of 15 nm.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"15 nm diameter InAs nanowire MOSFETs\",\"authors\":\"A. Dey, C. Thelander, M. Borgstrom, B. Borg, E. Lind, L. Wernersson\",\"doi\":\"10.1109/DRC.2011.5994403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"InAs is an attractive channel material for III–V nanowire MOSFETs and early prototype high performance nanowire transistors have been demonstrated1. As the gate length is reduced, the nanowire diameter must be scaled quite aggressively in order to suppress short-channel effects2. However, a reduction in transconductance (gm) and drive current (ION) could be expected due to increased surface scattering for thin wires. We present data for the device properties of thin InAs nanowires, with diameters in the 15 nm range, and investigate possible improvements of the performance focusing on transistor applications. In order to boost ION, the source and drain resistance need to be reduced. Several doping sources were therefore evaluated in the study, among them selenium (Se), tin (Sn) and sulphur (S) to form n-i-n structures. We report very high current densities, up to 33 MA/cm2, comparable to modern HEMTs3, and a normalized transconductance of 1.8 S/mm for a nanowire with an intrinsic segment of nominally 150 nm and a diameter of 15 nm.\",\"PeriodicalId\":107059,\"journal\":{\"name\":\"69th Device Research Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"69th Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2011.5994403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

InAs是III-V级纳米线mosfet的极具吸引力的沟道材料,早期的高性能纳米线晶体管原型已经被证明1。随着栅极长度的减小,为了抑制短沟道效应,纳米线的直径必须大幅缩小。然而,由于细线的表面散射增加,可以预期跨导(gm)和驱动电流(ION)的减少。我们提供了直径在15纳米范围内的细InAs纳米线的器件性能数据,并研究了聚焦于晶体管应用的性能改进的可能性。为了提高离子,需要降低源极和漏极电阻。因此,在研究中评估了几种掺杂源,其中包括硒(Se),锡(Sn)和硫(S),以形成n-i-n结构。我们报告了非常高的电流密度,高达33 MA/cm2,与现代HEMTs3相当,并且具有1.8 S/mm的归一化跨导纳米线,其名义上的固有段为150 nm,直径为15 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
15 nm diameter InAs nanowire MOSFETs
InAs is an attractive channel material for III–V nanowire MOSFETs and early prototype high performance nanowire transistors have been demonstrated1. As the gate length is reduced, the nanowire diameter must be scaled quite aggressively in order to suppress short-channel effects2. However, a reduction in transconductance (gm) and drive current (ION) could be expected due to increased surface scattering for thin wires. We present data for the device properties of thin InAs nanowires, with diameters in the 15 nm range, and investigate possible improvements of the performance focusing on transistor applications. In order to boost ION, the source and drain resistance need to be reduced. Several doping sources were therefore evaluated in the study, among them selenium (Se), tin (Sn) and sulphur (S) to form n-i-n structures. We report very high current densities, up to 33 MA/cm2, comparable to modern HEMTs3, and a normalized transconductance of 1.8 S/mm for a nanowire with an intrinsic segment of nominally 150 nm and a diameter of 15 nm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信