{"title":"基于最大最小量化器的灰度图像改进BTC算法","authors":"Jayamol Mathews, Madhu S. Nair, Liza Jo","doi":"10.1109/IMAC4S.2013.6526440","DOIUrl":null,"url":null,"abstract":"With the emerging multimedia technology, image data has been generated at high volume. It is thus important to reduce the image file sizes for storage and effective communication. Block Truncation Coding (BTC) is a lossy image compression technique which uses moment preserving quantization method for compressing digital gray level images. Even though this method retains the visual quality of the reconstructed image with good compression ratio, it shows some artifacts like staircase effect, raggedness, etc. near the edges. A set of advanced BTC variants reported in literature were studied and it was found that though the compression efficiency is good, the quality of the image has to be improved. A modified Block Truncation Coding using max-min quantizer (MBTC) is proposed in this paper to overcome the above mentioned drawbacks. In the conventional BTC, quantization is done based on the mean and standard deviation of the pixel values in each block. In the proposed method, instead of using the mean and standard deviation, an average value of the maximum, minimum and mean of the blocks of pixels is taken as the threshold for quantization. Experimental analysis shows an improvement in the visual quality of the reconstructed image by reducing the mean square error between the original and the reconstructed image. Since this method involves less number of simple computations, the time taken by this algorithm is also very less when compared with BTC.","PeriodicalId":403064,"journal":{"name":"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Modified BTC algorithm for gray scale images using max-min quantizer\",\"authors\":\"Jayamol Mathews, Madhu S. Nair, Liza Jo\",\"doi\":\"10.1109/IMAC4S.2013.6526440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the emerging multimedia technology, image data has been generated at high volume. It is thus important to reduce the image file sizes for storage and effective communication. Block Truncation Coding (BTC) is a lossy image compression technique which uses moment preserving quantization method for compressing digital gray level images. Even though this method retains the visual quality of the reconstructed image with good compression ratio, it shows some artifacts like staircase effect, raggedness, etc. near the edges. A set of advanced BTC variants reported in literature were studied and it was found that though the compression efficiency is good, the quality of the image has to be improved. A modified Block Truncation Coding using max-min quantizer (MBTC) is proposed in this paper to overcome the above mentioned drawbacks. In the conventional BTC, quantization is done based on the mean and standard deviation of the pixel values in each block. In the proposed method, instead of using the mean and standard deviation, an average value of the maximum, minimum and mean of the blocks of pixels is taken as the threshold for quantization. Experimental analysis shows an improvement in the visual quality of the reconstructed image by reducing the mean square error between the original and the reconstructed image. Since this method involves less number of simple computations, the time taken by this algorithm is also very less when compared with BTC.\",\"PeriodicalId\":403064,\"journal\":{\"name\":\"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMAC4S.2013.6526440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAC4S.2013.6526440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modified BTC algorithm for gray scale images using max-min quantizer
With the emerging multimedia technology, image data has been generated at high volume. It is thus important to reduce the image file sizes for storage and effective communication. Block Truncation Coding (BTC) is a lossy image compression technique which uses moment preserving quantization method for compressing digital gray level images. Even though this method retains the visual quality of the reconstructed image with good compression ratio, it shows some artifacts like staircase effect, raggedness, etc. near the edges. A set of advanced BTC variants reported in literature were studied and it was found that though the compression efficiency is good, the quality of the image has to be improved. A modified Block Truncation Coding using max-min quantizer (MBTC) is proposed in this paper to overcome the above mentioned drawbacks. In the conventional BTC, quantization is done based on the mean and standard deviation of the pixel values in each block. In the proposed method, instead of using the mean and standard deviation, an average value of the maximum, minimum and mean of the blocks of pixels is taken as the threshold for quantization. Experimental analysis shows an improvement in the visual quality of the reconstructed image by reducing the mean square error between the original and the reconstructed image. Since this method involves less number of simple computations, the time taken by this algorithm is also very less when compared with BTC.