具有不可观测选项的随机效用模型的公理化

Haruki Kono, Kota Saito, Alec Sandroni
{"title":"具有不可观测选项的随机效用模型的公理化","authors":"Haruki Kono, Kota Saito, Alec Sandroni","doi":"10.1145/3580507.3597792","DOIUrl":null,"url":null,"abstract":"The random utility model is one of the most fundamental models in discrete choice analysis in economics. Although Falmagne (1978) obtained an axiomatization of the random utility model, his characterization requires strong observability of choices, i.e., the frequencies of choices must be observed from all subsets of the set of alternatives. Little is known, however, about the axiomatization when the frequencies on some choice sets are not observable. In fact, the problem of obtaining a tight characterization appears to be out of reach in most cases in view of a related NP-hard problem. We consider the following incomplete dataset. Let X be a finite set of alternatives. Let X* ⊆ X bea set of unobservable alternatives. Let D ⊆ 2X be the set of choice sets. We assume that the choice frequency ρ(D, x) is unobservable (i.e., not defined) if and only if x ∈ X* or D ∉ D. Let M* ≡ {(D,x)|x ∈ D ∈ 2X and [x ∈ X* or D ∉ D]} be the set of all pairs (D,x) such that ρ(D, x) is not observable. To state our theorem, for any ρ and (D, x) ∈ M ≡ {(D, x) ∈ D × X | x ∈ D}, define a Block-Marschak polynomial by K(ρ, D, x) = ΣE:E⊇D(−1)|E\\D|ρ(E,x).","PeriodicalId":210555,"journal":{"name":"Proceedings of the 24th ACM Conference on Economics and Computation","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Axiomatization of Random Utility Model with Unobservable Alternatives\",\"authors\":\"Haruki Kono, Kota Saito, Alec Sandroni\",\"doi\":\"10.1145/3580507.3597792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The random utility model is one of the most fundamental models in discrete choice analysis in economics. Although Falmagne (1978) obtained an axiomatization of the random utility model, his characterization requires strong observability of choices, i.e., the frequencies of choices must be observed from all subsets of the set of alternatives. Little is known, however, about the axiomatization when the frequencies on some choice sets are not observable. In fact, the problem of obtaining a tight characterization appears to be out of reach in most cases in view of a related NP-hard problem. We consider the following incomplete dataset. Let X be a finite set of alternatives. Let X* ⊆ X bea set of unobservable alternatives. Let D ⊆ 2X be the set of choice sets. We assume that the choice frequency ρ(D, x) is unobservable (i.e., not defined) if and only if x ∈ X* or D ∉ D. Let M* ≡ {(D,x)|x ∈ D ∈ 2X and [x ∈ X* or D ∉ D]} be the set of all pairs (D,x) such that ρ(D, x) is not observable. To state our theorem, for any ρ and (D, x) ∈ M ≡ {(D, x) ∈ D × X | x ∈ D}, define a Block-Marschak polynomial by K(ρ, D, x) = ΣE:E⊇D(−1)|E\\\\D|ρ(E,x).\",\"PeriodicalId\":210555,\"journal\":{\"name\":\"Proceedings of the 24th ACM Conference on Economics and Computation\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM Conference on Economics and Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3580507.3597792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3580507.3597792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随机实用新型是经济学离散选择分析中最基本的模型之一。尽管Falmagne(1978)获得了随机实用新型的公理化,但他的描述要求选择具有很强的可观察性,即必须从选项集的所有子集中观察到选择的频率。然而,对于某些选择集的频率不可观测时的公理化却知之甚少。事实上,考虑到相关的NP-hard问题,在大多数情况下,获得严格的特征似乎是遥不可及的。我们考虑以下不完整的数据集。设X是一个有限的备选项集合。设X*⊥X是一组不可观察的备选项。设D≥2X为选择集的集合。我们假定选择频率ρ(D, x)是不可观测的(即未定义的)当且仅当x∈x *或D∈D。设M*≡{(D,x)|x∈D∈2X且[x∈x *或D∈D]}是使得ρ(D, x)不可观测的所有对(D,x)的集合。为了陈述我们的定理,对于任意ρ和(D, x)∈M≡{(D, x)∈D × x | x∈D},定义一个Block-Marschak多项式:K(ρ, D, x) = ΣE:E \D|ρ(E,x)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axiomatization of Random Utility Model with Unobservable Alternatives
The random utility model is one of the most fundamental models in discrete choice analysis in economics. Although Falmagne (1978) obtained an axiomatization of the random utility model, his characterization requires strong observability of choices, i.e., the frequencies of choices must be observed from all subsets of the set of alternatives. Little is known, however, about the axiomatization when the frequencies on some choice sets are not observable. In fact, the problem of obtaining a tight characterization appears to be out of reach in most cases in view of a related NP-hard problem. We consider the following incomplete dataset. Let X be a finite set of alternatives. Let X* ⊆ X bea set of unobservable alternatives. Let D ⊆ 2X be the set of choice sets. We assume that the choice frequency ρ(D, x) is unobservable (i.e., not defined) if and only if x ∈ X* or D ∉ D. Let M* ≡ {(D,x)|x ∈ D ∈ 2X and [x ∈ X* or D ∉ D]} be the set of all pairs (D,x) such that ρ(D, x) is not observable. To state our theorem, for any ρ and (D, x) ∈ M ≡ {(D, x) ∈ D × X | x ∈ D}, define a Block-Marschak polynomial by K(ρ, D, x) = ΣE:E⊇D(−1)|E\D|ρ(E,x).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信