基于协方差矩阵近似的多轨功率变换器实时系统识别计算量降低

Jin Xu, M. Armstrong, M. Al-Greer
{"title":"基于协方差矩阵近似的多轨功率变换器实时系统识别计算量降低","authors":"Jin Xu, M. Armstrong, M. Al-Greer","doi":"10.1109/APEC39645.2020.9124314","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to significantly reduce the computational burden of typical recursive algorithms used for real-time system identification. Recursive algorithms, such as Affine Projection (AP) and Recursive Least Square (RLS), contain two important updates per iteration cycle; the Covariance Matrix Approximation (CMA) update and the gradient vector (or cost function) update. Usually, the computational effort of updating CMA is much higher than that of updating gradient vector. Therefore, reusing CMA, calculated from the last iteration cycle, for the current iteration can result in computational cost savings for real-time system identification. This technique is particularly suitable for system identification-based adaptive control of complex power converter architectures suffering enormous computational burden. In the paper, this technique is applied for AP and RLS algorithms, for the purpose of identifying the parameters of a three-rail power converter.","PeriodicalId":171455,"journal":{"name":"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Burden Reduction in Real-Time System Identification of Multi-Rail Power Converter by Re-using Covariance Matrix Approximation\",\"authors\":\"Jin Xu, M. Armstrong, M. Al-Greer\",\"doi\":\"10.1109/APEC39645.2020.9124314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to significantly reduce the computational burden of typical recursive algorithms used for real-time system identification. Recursive algorithms, such as Affine Projection (AP) and Recursive Least Square (RLS), contain two important updates per iteration cycle; the Covariance Matrix Approximation (CMA) update and the gradient vector (or cost function) update. Usually, the computational effort of updating CMA is much higher than that of updating gradient vector. Therefore, reusing CMA, calculated from the last iteration cycle, for the current iteration can result in computational cost savings for real-time system identification. This technique is particularly suitable for system identification-based adaptive control of complex power converter architectures suffering enormous computational burden. In the paper, this technique is applied for AP and RLS algorithms, for the purpose of identifying the parameters of a three-rail power converter.\",\"PeriodicalId\":171455,\"journal\":{\"name\":\"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC39645.2020.9124314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC39645.2020.9124314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种显著减少用于实时系统识别的典型递归算法的计算量的方法。递归算法,如仿射投影(AP)和递归最小二乘(RLS),每个迭代周期包含两个重要的更新;协方差矩阵逼近(CMA)更新和梯度向量(或成本函数)更新。通常,更新CMA的计算量要比更新梯度向量的计算量大得多。因此,在当前迭代中重用从上一个迭代周期计算的CMA可以节省实时系统识别的计算成本。该技术特别适用于计算量大的复杂功率变换器结构的基于系统辨识的自适应控制。本文将该技术应用于AP和RLS算法中,用于三轨功率变换器的参数识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Burden Reduction in Real-Time System Identification of Multi-Rail Power Converter by Re-using Covariance Matrix Approximation
This paper presents an approach to significantly reduce the computational burden of typical recursive algorithms used for real-time system identification. Recursive algorithms, such as Affine Projection (AP) and Recursive Least Square (RLS), contain two important updates per iteration cycle; the Covariance Matrix Approximation (CMA) update and the gradient vector (or cost function) update. Usually, the computational effort of updating CMA is much higher than that of updating gradient vector. Therefore, reusing CMA, calculated from the last iteration cycle, for the current iteration can result in computational cost savings for real-time system identification. This technique is particularly suitable for system identification-based adaptive control of complex power converter architectures suffering enormous computational burden. In the paper, this technique is applied for AP and RLS algorithms, for the purpose of identifying the parameters of a three-rail power converter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信