{"title":"一种低功耗高性能分布式DCT架构","authors":"A. Shams, W. Pan, Archana Chidanandan, M. Bayoumi","doi":"10.1109/ISVLSI.2002.1016869","DOIUrl":null,"url":null,"abstract":"A new distributed arithmetic architecture, NEDA, is presented in this paper. NEDA is a low power optimized architecture based on the distributed arithmetic paradigm. In addition to low power performance, NEDA offers high speed and reduced area. In NEDA, inner product computational module has been proved, mathematically, to require only additions. Moreover, minimum number of additions is used by exploiting the redundancy in the adder array. Such properties have made a NEDA unit a basic computational module for high performance DSP architectures. A case study of 8/spl times/8 DCT NEDA-based architecture is analyzed. Savings exceeding 88% are achieved for the DCT implementation.","PeriodicalId":177982,"journal":{"name":"Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A low power high performance distributed DCT architecture\",\"authors\":\"A. Shams, W. Pan, Archana Chidanandan, M. Bayoumi\",\"doi\":\"10.1109/ISVLSI.2002.1016869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new distributed arithmetic architecture, NEDA, is presented in this paper. NEDA is a low power optimized architecture based on the distributed arithmetic paradigm. In addition to low power performance, NEDA offers high speed and reduced area. In NEDA, inner product computational module has been proved, mathematically, to require only additions. Moreover, minimum number of additions is used by exploiting the redundancy in the adder array. Such properties have made a NEDA unit a basic computational module for high performance DSP architectures. A case study of 8/spl times/8 DCT NEDA-based architecture is analyzed. Savings exceeding 88% are achieved for the DCT implementation.\",\"PeriodicalId\":177982,\"journal\":{\"name\":\"Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2002.1016869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2002.1016869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low power high performance distributed DCT architecture
A new distributed arithmetic architecture, NEDA, is presented in this paper. NEDA is a low power optimized architecture based on the distributed arithmetic paradigm. In addition to low power performance, NEDA offers high speed and reduced area. In NEDA, inner product computational module has been proved, mathematically, to require only additions. Moreover, minimum number of additions is used by exploiting the redundancy in the adder array. Such properties have made a NEDA unit a basic computational module for high performance DSP architectures. A case study of 8/spl times/8 DCT NEDA-based architecture is analyzed. Savings exceeding 88% are achieved for the DCT implementation.