利用遗传算法测量协同过滤推荐系统中用户之间的相似度

Bushra Alhijawi, Y. Kilani
{"title":"利用遗传算法测量协同过滤推荐系统中用户之间的相似度","authors":"Bushra Alhijawi, Y. Kilani","doi":"10.1109/ICIS.2016.7550751","DOIUrl":null,"url":null,"abstract":"Recommender systems aim to help web users to find only close information to their preferences rather than searching through undifferentiated mass of information. Currently, collaborative filtering is probably the most known and commonly used recommendation approach in recommender systems. In this paper, we present a new genetic algorithms-based recommender system, SimGen, that computes the similarity values between users without using any of the well-known similarity metric calculation algorithms like Pearson correlation and vector cosine-based similarity. The results obtained present 46% and 38% improvements in prediction quality and performance, respectively when compared with other techniques.","PeriodicalId":336322,"journal":{"name":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Using genetic algorithms for measuring the similarity values between users in collaborative filtering recommender systems\",\"authors\":\"Bushra Alhijawi, Y. Kilani\",\"doi\":\"10.1109/ICIS.2016.7550751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems aim to help web users to find only close information to their preferences rather than searching through undifferentiated mass of information. Currently, collaborative filtering is probably the most known and commonly used recommendation approach in recommender systems. In this paper, we present a new genetic algorithms-based recommender system, SimGen, that computes the similarity values between users without using any of the well-known similarity metric calculation algorithms like Pearson correlation and vector cosine-based similarity. The results obtained present 46% and 38% improvements in prediction quality and performance, respectively when compared with other techniques.\",\"PeriodicalId\":336322,\"journal\":{\"name\":\"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2016.7550751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2016.7550751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

推荐系统的目的是帮助网络用户只找到与他们的喜好相近的信息,而不是在无差别的大量信息中搜索。目前,协同过滤可能是推荐系统中最知名和最常用的推荐方法。在本文中,我们提出了一个新的基于遗传算法的推荐系统,SimGen,它计算用户之间的相似度值,而不使用任何众所周知的相似度度量计算算法,如Pearson相关和基于向量余弦的相似度。所得结果与其他技术相比,预测质量和性能分别提高了46%和38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using genetic algorithms for measuring the similarity values between users in collaborative filtering recommender systems
Recommender systems aim to help web users to find only close information to their preferences rather than searching through undifferentiated mass of information. Currently, collaborative filtering is probably the most known and commonly used recommendation approach in recommender systems. In this paper, we present a new genetic algorithms-based recommender system, SimGen, that computes the similarity values between users without using any of the well-known similarity metric calculation algorithms like Pearson correlation and vector cosine-based similarity. The results obtained present 46% and 38% improvements in prediction quality and performance, respectively when compared with other techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信