非线性支持向量机分类中高斯核函数的硬件设计

Yuanfa Wang, Yu Pang, Huan Huang, Qianneng Zhou, Jiasai Luo
{"title":"非线性支持向量机分类中高斯核函数的硬件设计","authors":"Yuanfa Wang, Yu Pang, Huan Huang, Qianneng Zhou, Jiasai Luo","doi":"10.1109/ASICON52560.2021.9620361","DOIUrl":null,"url":null,"abstract":"High-performance implementation of non-linear support vector machine (SVM) function is important in many applications. This paper develops a hardware design of Gaussian kernel function with high-performance since it is one of the most modules in non-linear SVM. The designed Gaussian kernel function consists of Norm unit and exponentiation function unit. The Norm unit uses fewer subtractors and multiplexers. The exponentiation function unit performs modified coordinate rotation digital computer algorithm with wide range of convergence and high accuracy. The presented circuit is implemented on a Xilinx field-programmable gate array platform. The experimental results demonstrate that the designed circuit achieves low resource utilization and high efficiency with relative error 0.0001.","PeriodicalId":233584,"journal":{"name":"2021 IEEE 14th International Conference on ASIC (ASICON)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware Design of Gaussian Kernel Function for Non-Linear SVM Classification\",\"authors\":\"Yuanfa Wang, Yu Pang, Huan Huang, Qianneng Zhou, Jiasai Luo\",\"doi\":\"10.1109/ASICON52560.2021.9620361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance implementation of non-linear support vector machine (SVM) function is important in many applications. This paper develops a hardware design of Gaussian kernel function with high-performance since it is one of the most modules in non-linear SVM. The designed Gaussian kernel function consists of Norm unit and exponentiation function unit. The Norm unit uses fewer subtractors and multiplexers. The exponentiation function unit performs modified coordinate rotation digital computer algorithm with wide range of convergence and high accuracy. The presented circuit is implemented on a Xilinx field-programmable gate array platform. The experimental results demonstrate that the designed circuit achieves low resource utilization and high efficiency with relative error 0.0001.\",\"PeriodicalId\":233584,\"journal\":{\"name\":\"2021 IEEE 14th International Conference on ASIC (ASICON)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th International Conference on ASIC (ASICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASICON52560.2021.9620361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON52560.2021.9620361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非线性支持向量机(SVM)函数的高性能实现在许多应用中都很重要。由于高斯核函数是非线性支持向量机中最重要的模块之一,本文开发了一种高性能的高斯核函数硬件设计。所设计的高斯核函数由范数单元和幂函数单元组成。Norm单元使用较少的减法器和多路复用器。幂函数单元采用改进的坐标旋转数字计算机算法,收敛范围广,精度高。该电路在赛灵思现场可编程门阵列平台上实现。实验结果表明,所设计的电路资源利用率低,效率高,相对误差为0.0001。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware Design of Gaussian Kernel Function for Non-Linear SVM Classification
High-performance implementation of non-linear support vector machine (SVM) function is important in many applications. This paper develops a hardware design of Gaussian kernel function with high-performance since it is one of the most modules in non-linear SVM. The designed Gaussian kernel function consists of Norm unit and exponentiation function unit. The Norm unit uses fewer subtractors and multiplexers. The exponentiation function unit performs modified coordinate rotation digital computer algorithm with wide range of convergence and high accuracy. The presented circuit is implemented on a Xilinx field-programmable gate array platform. The experimental results demonstrate that the designed circuit achieves low resource utilization and high efficiency with relative error 0.0001.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信