45纳米节点多孔低k/铜互连的BEOL工艺集成技术

N. Matsunaga, N. Nakamura, K. Higashi, H. Yamaguchi, T. Watanabe, K. Akiyama, S. Nakao, K. Fujita, H. Miyajima, S. Omoto, A. Sakata, T. Katata, Y. Kagawa, H. Kawashima, Y. Enomoto, T. Hasegawa, H. Shibata
{"title":"45纳米节点多孔低k/铜互连的BEOL工艺集成技术","authors":"N. Matsunaga, N. Nakamura, K. Higashi, H. Yamaguchi, T. Watanabe, K. Akiyama, S. Nakao, K. Fujita, H. Miyajima, S. Omoto, A. Sakata, T. Katata, Y. Kagawa, H. Kawashima, Y. Enomoto, T. Hasegawa, H. Shibata","doi":"10.1109/IITC.2005.1499903","DOIUrl":null,"url":null,"abstract":"Highly reliable BEOL integration technology with porous low-k (k=2.3) was realized by development focusing on plasma damage control and moisture control. A hybrid dielectric scheme with damage resistant porous low-k films and buffer film was applied in view of its inherent advantages for realizing reliable porous low-k integration. A metallization process was developed from the viewpoint of suppressing morphology and adhesion degradation of barrier metal by oxidation. A dummy wiring pattern was also adopted to remove moisture absorbed in porous low-k films. Stress-migration and electromigration satisfying practical reliability were obtained with via size of 75 nm for the first time by utilizing all possible measures for reducing the damage and the moisture.","PeriodicalId":156268,"journal":{"name":"Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005.","volume":"370 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"BEOL process integration technology for 45 nm node porous low-k/copper interconnects\",\"authors\":\"N. Matsunaga, N. Nakamura, K. Higashi, H. Yamaguchi, T. Watanabe, K. Akiyama, S. Nakao, K. Fujita, H. Miyajima, S. Omoto, A. Sakata, T. Katata, Y. Kagawa, H. Kawashima, Y. Enomoto, T. Hasegawa, H. Shibata\",\"doi\":\"10.1109/IITC.2005.1499903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly reliable BEOL integration technology with porous low-k (k=2.3) was realized by development focusing on plasma damage control and moisture control. A hybrid dielectric scheme with damage resistant porous low-k films and buffer film was applied in view of its inherent advantages for realizing reliable porous low-k integration. A metallization process was developed from the viewpoint of suppressing morphology and adhesion degradation of barrier metal by oxidation. A dummy wiring pattern was also adopted to remove moisture absorbed in porous low-k films. Stress-migration and electromigration satisfying practical reliability were obtained with via size of 75 nm for the first time by utilizing all possible measures for reducing the damage and the moisture.\",\"PeriodicalId\":156268,\"journal\":{\"name\":\"Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005.\",\"volume\":\"370 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2005.1499903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2005 International Interconnect Technology Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2005.1499903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

以等离子体损伤控制和水分控制为重点,实现了高可靠的多孔低k (k=2.3) BEOL集成技术。采用具有耐损伤低钾多孔膜和缓冲膜的混合介质方案实现可靠的多孔低钾集成。从氧化抑制屏障金属的形貌和粘附降解的角度出发,提出了一种金属化工艺。还采用了虚拟布线模式来去除多孔低钾薄膜中吸收的水分。采用各种可能的措施减少损伤和水分,首次获得了满足实际可靠性的75 nm通孔的应力迁移和电迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BEOL process integration technology for 45 nm node porous low-k/copper interconnects
Highly reliable BEOL integration technology with porous low-k (k=2.3) was realized by development focusing on plasma damage control and moisture control. A hybrid dielectric scheme with damage resistant porous low-k films and buffer film was applied in view of its inherent advantages for realizing reliable porous low-k integration. A metallization process was developed from the viewpoint of suppressing morphology and adhesion degradation of barrier metal by oxidation. A dummy wiring pattern was also adopted to remove moisture absorbed in porous low-k films. Stress-migration and electromigration satisfying practical reliability were obtained with via size of 75 nm for the first time by utilizing all possible measures for reducing the damage and the moisture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信