基于自适应小波收缩的语音增强

I. Kim, Sung-il Yang, Y. Kwon
{"title":"基于自适应小波收缩的语音增强","authors":"I. Kim, Sung-il Yang, Y. Kwon","doi":"10.1109/ISIE.2001.931842","DOIUrl":null,"url":null,"abstract":"In this paper, the authors propose an adaptive wavelet threshold for noise cancellation. For this, they use a threshold value which minimizes Bayesian risk. And using entropy, they part the noisy signal into an unvoiced signal section and the other signal section is used to apply each the threshold value for each section. Experimental results show that proposed algorithm is more efficient.","PeriodicalId":124749,"journal":{"name":"ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Speech enhancement using adaptive wavelet shrinkage\",\"authors\":\"I. Kim, Sung-il Yang, Y. Kwon\",\"doi\":\"10.1109/ISIE.2001.931842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors propose an adaptive wavelet threshold for noise cancellation. For this, they use a threshold value which minimizes Bayesian risk. And using entropy, they part the noisy signal into an unvoiced signal section and the other signal section is used to apply each the threshold value for each section. Experimental results show that proposed algorithm is more efficient.\",\"PeriodicalId\":124749,\"journal\":{\"name\":\"ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2001.931842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2001.931842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种自适应小波阈值去噪方法。为此,他们使用最小化贝叶斯风险的阈值。利用熵,他们将有噪声的信号分割成一个未发音的信号部分,另一个信号部分用于应用每个部分的阈值。实验结果表明,该算法具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speech enhancement using adaptive wavelet shrinkage
In this paper, the authors propose an adaptive wavelet threshold for noise cancellation. For this, they use a threshold value which minimizes Bayesian risk. And using entropy, they part the noisy signal into an unvoiced signal section and the other signal section is used to apply each the threshold value for each section. Experimental results show that proposed algorithm is more efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信