Christina M. Vanden Bosch der Nederlanden, J. E. T. Taylor, Jessica A. Grahn
{"title":"节奏感知的神经基础","authors":"Christina M. Vanden Bosch der Nederlanden, J. E. T. Taylor, Jessica A. Grahn","doi":"10.1093/OXFORDHB/9780198804123.013.8","DOIUrl":null,"url":null,"abstract":"To understand and enjoy music, it is important to be able to hear the beat and move your body to the rhythm. However, impaired rhythm processing has a broader impact on perception and cognition beyond music-specific tasks. We also experience rhythms in our everyday interactions, through the lip and jaw movements of watching someone speak, the syllabic structure of words on the radio, and in the movements of our limbs when we walk. Impairments in the ability to perceive and produce rhythms are related to poor language outcomes, such as dyslexia, and they can provide an index of a primary symptom in movement disorders, such as Parkinson’s disease. The chapter summarizes a growing body of literature examining the neural underpinnings of rhythm perception and production. It highlights the importance of auditory-motor relationships in finding and producing a beat in music by reviewing evidence from a number of methodologies. These approaches illustrate how rhythmic auditory information capitalizes on auditory-motor interactions to influence motor excitability, and how beat perception emerges as a function of nonlinear oscillatory dynamics of the brain. Together these studies highlight the important role of rhythm in human development, evolutionary comparisons, multi-modal perception, mirror neurons, language processing, and music.","PeriodicalId":210705,"journal":{"name":"The Oxford Handbook of Music and the Brain","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural Basis of Rhythm Perception\",\"authors\":\"Christina M. Vanden Bosch der Nederlanden, J. E. T. Taylor, Jessica A. Grahn\",\"doi\":\"10.1093/OXFORDHB/9780198804123.013.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand and enjoy music, it is important to be able to hear the beat and move your body to the rhythm. However, impaired rhythm processing has a broader impact on perception and cognition beyond music-specific tasks. We also experience rhythms in our everyday interactions, through the lip and jaw movements of watching someone speak, the syllabic structure of words on the radio, and in the movements of our limbs when we walk. Impairments in the ability to perceive and produce rhythms are related to poor language outcomes, such as dyslexia, and they can provide an index of a primary symptom in movement disorders, such as Parkinson’s disease. The chapter summarizes a growing body of literature examining the neural underpinnings of rhythm perception and production. It highlights the importance of auditory-motor relationships in finding and producing a beat in music by reviewing evidence from a number of methodologies. These approaches illustrate how rhythmic auditory information capitalizes on auditory-motor interactions to influence motor excitability, and how beat perception emerges as a function of nonlinear oscillatory dynamics of the brain. Together these studies highlight the important role of rhythm in human development, evolutionary comparisons, multi-modal perception, mirror neurons, language processing, and music.\",\"PeriodicalId\":210705,\"journal\":{\"name\":\"The Oxford Handbook of Music and the Brain\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Oxford Handbook of Music and the Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OXFORDHB/9780198804123.013.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Oxford Handbook of Music and the Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OXFORDHB/9780198804123.013.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
To understand and enjoy music, it is important to be able to hear the beat and move your body to the rhythm. However, impaired rhythm processing has a broader impact on perception and cognition beyond music-specific tasks. We also experience rhythms in our everyday interactions, through the lip and jaw movements of watching someone speak, the syllabic structure of words on the radio, and in the movements of our limbs when we walk. Impairments in the ability to perceive and produce rhythms are related to poor language outcomes, such as dyslexia, and they can provide an index of a primary symptom in movement disorders, such as Parkinson’s disease. The chapter summarizes a growing body of literature examining the neural underpinnings of rhythm perception and production. It highlights the importance of auditory-motor relationships in finding and producing a beat in music by reviewing evidence from a number of methodologies. These approaches illustrate how rhythmic auditory information capitalizes on auditory-motor interactions to influence motor excitability, and how beat perception emerges as a function of nonlinear oscillatory dynamics of the brain. Together these studies highlight the important role of rhythm in human development, evolutionary comparisons, multi-modal perception, mirror neurons, language processing, and music.