主动需求管理中的数据挖掘技术研究

Chen Xuemei, Gao Li, Wang Xi, Wei Zhonghua, Z. Zhenhua, Liao Zhigao
{"title":"主动需求管理中的数据挖掘技术研究","authors":"Chen Xuemei, Gao Li, Wang Xi, Wei Zhonghua, Z. Zhenhua, Liao Zhigao","doi":"10.1109/ICICIS.2011.125","DOIUrl":null,"url":null,"abstract":"The traditional K-Means algorithm is sensitive to outliers, outliers traction and easy off-center, and overlap of classes can not very well show their classification. This paper introduces a variant of the probability distribution theory, K-Means clustering algorithm - Gaussian mixture model to part of the customer data randomly selected of Volkswagen dealer in a Beijing office in 2008, for example, and carry out empirical study based on the improved clustering algorithm model. The results showed that: data mining clustering algorithm in active demand management and market segmentation has important significance.","PeriodicalId":255291,"journal":{"name":"2011 International Conference on Internet Computing and Information Services","volume":"293 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Research on the Data Mining Technology in the Active Demand Management\",\"authors\":\"Chen Xuemei, Gao Li, Wang Xi, Wei Zhonghua, Z. Zhenhua, Liao Zhigao\",\"doi\":\"10.1109/ICICIS.2011.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional K-Means algorithm is sensitive to outliers, outliers traction and easy off-center, and overlap of classes can not very well show their classification. This paper introduces a variant of the probability distribution theory, K-Means clustering algorithm - Gaussian mixture model to part of the customer data randomly selected of Volkswagen dealer in a Beijing office in 2008, for example, and carry out empirical study based on the improved clustering algorithm model. The results showed that: data mining clustering algorithm in active demand management and market segmentation has important significance.\",\"PeriodicalId\":255291,\"journal\":{\"name\":\"2011 International Conference on Internet Computing and Information Services\",\"volume\":\"293 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Internet Computing and Information Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIS.2011.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Internet Computing and Information Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIS.2011.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的K-Means算法对离群点敏感,离群点牵引力大,容易偏离中心,类的重叠不能很好地显示其分类。本文以2008年大众汽车北京办事处经销商随机抽取的部分客户数据为例,将概率分布理论的一种变体K-Means聚类算法-高斯混合模型引入其中,并基于改进的聚类算法模型进行实证研究。结果表明:数据挖掘聚类算法在主动需求管理和市场细分中具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Research on the Data Mining Technology in the Active Demand Management
The traditional K-Means algorithm is sensitive to outliers, outliers traction and easy off-center, and overlap of classes can not very well show their classification. This paper introduces a variant of the probability distribution theory, K-Means clustering algorithm - Gaussian mixture model to part of the customer data randomly selected of Volkswagen dealer in a Beijing office in 2008, for example, and carry out empirical study based on the improved clustering algorithm model. The results showed that: data mining clustering algorithm in active demand management and market segmentation has important significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信