基于SVM和GMM的生物声音自动检测与分类研究

Bor Jenq. Chua, Xue Li, H. D. Tran
{"title":"基于SVM和GMM的生物声音自动检测与分类研究","authors":"Bor Jenq. Chua, Xue Li, H. D. Tran","doi":"10.1109/LISSA.2011.5754182","DOIUrl":null,"url":null,"abstract":"Ambulatory devices can be used to detect heart diseases and save lives in critical time. These devices are based on sound classification that usually adopts a suitable data mining algorithm. This paper investigates the performance of Support Vector Machine (SVM) and Gaussian Mixture Model (GMM) classifiers in classifying sound samples. SVM classifier makes use of a linearly separable hyperplane to classify data into different classes, while GMM utilizes a probabilistic model for density estimation through probability density functions. Feature vectors of sound samples were extracted using the Mel-frequency cepstral coefficients (MFCCs) and fed to the classifiers. Our experimental results showed that SVM is more robust than GMM, and SVM achieved >80% classification accuracy in all classes of sound samples collected in this study.","PeriodicalId":227469,"journal":{"name":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study of automatic biosounds detection and classification using SVM and GMM\",\"authors\":\"Bor Jenq. Chua, Xue Li, H. D. Tran\",\"doi\":\"10.1109/LISSA.2011.5754182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambulatory devices can be used to detect heart diseases and save lives in critical time. These devices are based on sound classification that usually adopts a suitable data mining algorithm. This paper investigates the performance of Support Vector Machine (SVM) and Gaussian Mixture Model (GMM) classifiers in classifying sound samples. SVM classifier makes use of a linearly separable hyperplane to classify data into different classes, while GMM utilizes a probabilistic model for density estimation through probability density functions. Feature vectors of sound samples were extracted using the Mel-frequency cepstral coefficients (MFCCs) and fed to the classifiers. Our experimental results showed that SVM is more robust than GMM, and SVM achieved >80% classification accuracy in all classes of sound samples collected in this study.\",\"PeriodicalId\":227469,\"journal\":{\"name\":\"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LISSA.2011.5754182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LISSA.2011.5754182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

流动设备可用于检测心脏疾病,并在关键时刻挽救生命。这些设备基于健全的分类,通常采用合适的数据挖掘算法。本文研究了支持向量机(SVM)和高斯混合模型(GMM)分类器在声音样本分类中的性能。SVM分类器利用线性可分的超平面对数据进行分类,而GMM利用概率模型通过概率密度函数进行密度估计。利用Mel-frequency倒谱系数(MFCCs)提取声音样本的特征向量,并将其输入到分类器中。我们的实验结果表明,SVM比GMM具有更强的鲁棒性,SVM在本研究收集的所有类别的声音样本中都达到了>80%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of automatic biosounds detection and classification using SVM and GMM
Ambulatory devices can be used to detect heart diseases and save lives in critical time. These devices are based on sound classification that usually adopts a suitable data mining algorithm. This paper investigates the performance of Support Vector Machine (SVM) and Gaussian Mixture Model (GMM) classifiers in classifying sound samples. SVM classifier makes use of a linearly separable hyperplane to classify data into different classes, while GMM utilizes a probabilistic model for density estimation through probability density functions. Feature vectors of sound samples were extracted using the Mel-frequency cepstral coefficients (MFCCs) and fed to the classifiers. Our experimental results showed that SVM is more robust than GMM, and SVM achieved >80% classification accuracy in all classes of sound samples collected in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信