缓存中的在线故障检测和限制

J. Abella, P. Chaparro, X. Vera, J. Carretero, Antonio González
{"title":"缓存中的在线故障检测和限制","authors":"J. Abella, P. Chaparro, X. Vera, J. Carretero, Antonio González","doi":"10.1109/IOLTS.2008.15","DOIUrl":null,"url":null,"abstract":"Technology scaling leads to burn-in phase out and increasing post-silicon test complexity, which increases in-the-field error rate due to both latent defects and actual errors. As a consequence, there is an increasing need for continuous on-line testing techniques to cope with hard errors in the field. Similarly, those techniques are needed for detecting soft errors in logic, whose error rate is expected to raise in future technologies. Cache memories, which occupy most of the area of the chip, are typically protected with parity or ECC, but most of the wires as well as some combinational blocks remain unprotected against both soft and hard errors. This paper presents a set of techniques to detect and confine hard and soft errors in cache memories in combination with parity/ECC at very low cost. By means of hard signatures in data rows and error tracking, faults can be detected, classified properly and confined for hardware reconfiguration.","PeriodicalId":261786,"journal":{"name":"2008 14th IEEE International On-Line Testing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On-Line Failure Detection and Confinement in Caches\",\"authors\":\"J. Abella, P. Chaparro, X. Vera, J. Carretero, Antonio González\",\"doi\":\"10.1109/IOLTS.2008.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology scaling leads to burn-in phase out and increasing post-silicon test complexity, which increases in-the-field error rate due to both latent defects and actual errors. As a consequence, there is an increasing need for continuous on-line testing techniques to cope with hard errors in the field. Similarly, those techniques are needed for detecting soft errors in logic, whose error rate is expected to raise in future technologies. Cache memories, which occupy most of the area of the chip, are typically protected with parity or ECC, but most of the wires as well as some combinational blocks remain unprotected against both soft and hard errors. This paper presents a set of techniques to detect and confine hard and soft errors in cache memories in combination with parity/ECC at very low cost. By means of hard signatures in data rows and error tracking, faults can be detected, classified properly and confined for hardware reconfiguration.\",\"PeriodicalId\":261786,\"journal\":{\"name\":\"2008 14th IEEE International On-Line Testing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 14th IEEE International On-Line Testing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IOLTS.2008.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 14th IEEE International On-Line Testing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOLTS.2008.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

技术的规模化导致老化逐步淘汰,增加了硅后测试的复杂性,从而增加了由于潜在缺陷和实际错误导致的现场错误率。因此,对连续在线测试技术的需求日益增加,以应对该领域的硬错误。同样,这些技术也需要用于检测逻辑中的软错误,在未来的技术中,其错误率预计会提高。占据芯片大部分区域的高速缓存存储器通常采用奇偶校验或ECC保护,但大多数导线以及一些组合块仍然不受软错误和硬错误的保护。本文提出了一套结合奇偶校验/ECC以非常低的成本检测和限制缓存存储器中的硬错误和软错误的技术。通过数据行中的硬签名和错误跟踪,可以检测故障,对故障进行正确的分类,并限制故障的发生,以便进行硬件重构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-Line Failure Detection and Confinement in Caches
Technology scaling leads to burn-in phase out and increasing post-silicon test complexity, which increases in-the-field error rate due to both latent defects and actual errors. As a consequence, there is an increasing need for continuous on-line testing techniques to cope with hard errors in the field. Similarly, those techniques are needed for detecting soft errors in logic, whose error rate is expected to raise in future technologies. Cache memories, which occupy most of the area of the chip, are typically protected with parity or ECC, but most of the wires as well as some combinational blocks remain unprotected against both soft and hard errors. This paper presents a set of techniques to detect and confine hard and soft errors in cache memories in combination with parity/ECC at very low cost. By means of hard signatures in data rows and error tracking, faults can be detected, classified properly and confined for hardware reconfiguration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信