基于人工神经网络的声控微型飞行器语音识别引擎

Sushma. M. Gowda, D. K. Rahul, A. Anand, S. Veena, V. B. Durdi
{"title":"基于人工神经网络的声控微型飞行器语音识别引擎","authors":"Sushma. M. Gowda, D. K. Rahul, A. Anand, S. Veena, V. B. Durdi","doi":"10.1109/RTEICT46194.2019.9016983","DOIUrl":null,"url":null,"abstract":"Voice Controlled MAV (Micro Air Vehicle) is an attractive alternative to flying the MAVs without a joystick/ mouse clicks. This being a command and control application calls for accurate and fast Speech Recognition. The paper proposes a feed forward neural network based speech recognition for voice controlled MAV application, which achieves better accuracy and faster recognition compared Viterbi algorithm which operates on statistical data. ANN (Artificial Neural Network) could achieve word accuracy of 93% against 85% as achieved by HMM (Hidden Markov Model). ANN achieved about 25% faster recognition compared to HMM.","PeriodicalId":269385,"journal":{"name":"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial Neural Network based Automatic Speech Recognition Engine for Voice Controlled Micro Air Vehicles\",\"authors\":\"Sushma. M. Gowda, D. K. Rahul, A. Anand, S. Veena, V. B. Durdi\",\"doi\":\"10.1109/RTEICT46194.2019.9016983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voice Controlled MAV (Micro Air Vehicle) is an attractive alternative to flying the MAVs without a joystick/ mouse clicks. This being a command and control application calls for accurate and fast Speech Recognition. The paper proposes a feed forward neural network based speech recognition for voice controlled MAV application, which achieves better accuracy and faster recognition compared Viterbi algorithm which operates on statistical data. ANN (Artificial Neural Network) could achieve word accuracy of 93% against 85% as achieved by HMM (Hidden Markov Model). ANN achieved about 25% faster recognition compared to HMM.\",\"PeriodicalId\":269385,\"journal\":{\"name\":\"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT46194.2019.9016983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT46194.2019.9016983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语音控制的MAV(微型飞行器)是一个有吸引力的替代飞行MAVs没有操纵杆/鼠标点击。这是一个命令和控制应用程序要求准确和快速的语音识别。本文提出了一种基于前馈神经网络的语音识别方法,该方法与基于统计数据的Viterbi算法相比,具有更高的识别精度和更快的识别速度。人工神经网络(ANN)可以达到93%的单词准确率,而隐马尔可夫模型(HMM)的准确率为85%。与HMM相比,人工神经网络的识别速度提高了25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network based Automatic Speech Recognition Engine for Voice Controlled Micro Air Vehicles
Voice Controlled MAV (Micro Air Vehicle) is an attractive alternative to flying the MAVs without a joystick/ mouse clicks. This being a command and control application calls for accurate and fast Speech Recognition. The paper proposes a feed forward neural network based speech recognition for voice controlled MAV application, which achieves better accuracy and faster recognition compared Viterbi algorithm which operates on statistical data. ANN (Artificial Neural Network) could achieve word accuracy of 93% against 85% as achieved by HMM (Hidden Markov Model). ANN achieved about 25% faster recognition compared to HMM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信