{"title":"基于asm的自检控制器的合成","authors":"I. Levin, V. Sinelnikov, M. Karpovsky","doi":"10.1109/DSD.2001.952122","DOIUrl":null,"url":null,"abstract":"In this paper we present a new technique for on-line checking of FPGA-based sequential devices defined by their algorithmic state machines (ASMs). The technique utilizes specific properties of ASMs for achieving the totally self-checking goal with a low hardware overhead. This technique is based on the architecture that consists of two portions: a self-checking sequential device and a separate totally self-checking (TSC) checker. Each of these portions is implemented as a combination of an \"evolution\" block and an \"execution\" block. Comparison of code vectors transferred between these blocks provides for the totally self-checking property. The proposed technique does not require any redundant encoding of output words and uses a one-rail design, thereby drastically decreasing the required overhead. The paper presents overhead estimations and results for benchmarks for the proposed architecture.","PeriodicalId":285358,"journal":{"name":"Proceedings Euromicro Symposium on Digital Systems Design","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Synthesis of ASM-based self-checking controllers\",\"authors\":\"I. Levin, V. Sinelnikov, M. Karpovsky\",\"doi\":\"10.1109/DSD.2001.952122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a new technique for on-line checking of FPGA-based sequential devices defined by their algorithmic state machines (ASMs). The technique utilizes specific properties of ASMs for achieving the totally self-checking goal with a low hardware overhead. This technique is based on the architecture that consists of two portions: a self-checking sequential device and a separate totally self-checking (TSC) checker. Each of these portions is implemented as a combination of an \\\"evolution\\\" block and an \\\"execution\\\" block. Comparison of code vectors transferred between these blocks provides for the totally self-checking property. The proposed technique does not require any redundant encoding of output words and uses a one-rail design, thereby drastically decreasing the required overhead. The paper presents overhead estimations and results for benchmarks for the proposed architecture.\",\"PeriodicalId\":285358,\"journal\":{\"name\":\"Proceedings Euromicro Symposium on Digital Systems Design\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Euromicro Symposium on Digital Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2001.952122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Euromicro Symposium on Digital Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2001.952122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we present a new technique for on-line checking of FPGA-based sequential devices defined by their algorithmic state machines (ASMs). The technique utilizes specific properties of ASMs for achieving the totally self-checking goal with a low hardware overhead. This technique is based on the architecture that consists of two portions: a self-checking sequential device and a separate totally self-checking (TSC) checker. Each of these portions is implemented as a combination of an "evolution" block and an "execution" block. Comparison of code vectors transferred between these blocks provides for the totally self-checking property. The proposed technique does not require any redundant encoding of output words and uses a one-rail design, thereby drastically decreasing the required overhead. The paper presents overhead estimations and results for benchmarks for the proposed architecture.