为GPU启用线程批处理内存分区

Mengjie Mao, Wujie Wen, Xiaoxiao Liu, J. Hu, Danghui Wang, Yiran Chen, Hai Helen Li
{"title":"为GPU启用线程批处理内存分区","authors":"Mengjie Mao, Wujie Wen, Xiaoxiao Liu, J. Hu, Danghui Wang, Yiran Chen, Hai Helen Li","doi":"10.1145/2897937.2898103","DOIUrl":null,"url":null,"abstract":"As massive multi-threading in GPU imposes tremendous pressure on memory subsystems, efficient bandwidth utilization becomes a key factor affecting the GPU throughput. In this work, we propose thread batch enabled memory partitioning (TEMP), to improve GPU performance through the improvement of memory bandwidth utilization. In particular, TEMP clusters multiple thread blocks sharing the same set of pages into a thread batch and dispatches the entire thread batch to a stream multiprocessor. TEMP separates the memory access streams of different thread batches by OS memory management, preserving the intrinsic locality of thread batches and increasing the memory access parallelism. Experimental results show that TEMP can obtain up to 10.3% performance improvement and 14.6% DRAM energy reduction compared to a state-of-the-art scheduler without any memory-side optimizations.","PeriodicalId":185271,"journal":{"name":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"TEMP: Thread batch enabled memory partitioning for GPU\",\"authors\":\"Mengjie Mao, Wujie Wen, Xiaoxiao Liu, J. Hu, Danghui Wang, Yiran Chen, Hai Helen Li\",\"doi\":\"10.1145/2897937.2898103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As massive multi-threading in GPU imposes tremendous pressure on memory subsystems, efficient bandwidth utilization becomes a key factor affecting the GPU throughput. In this work, we propose thread batch enabled memory partitioning (TEMP), to improve GPU performance through the improvement of memory bandwidth utilization. In particular, TEMP clusters multiple thread blocks sharing the same set of pages into a thread batch and dispatches the entire thread batch to a stream multiprocessor. TEMP separates the memory access streams of different thread batches by OS memory management, preserving the intrinsic locality of thread batches and increasing the memory access parallelism. Experimental results show that TEMP can obtain up to 10.3% performance improvement and 14.6% DRAM energy reduction compared to a state-of-the-art scheduler without any memory-side optimizations.\",\"PeriodicalId\":185271,\"journal\":{\"name\":\"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897937.2898103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897937.2898103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

由于GPU中大量的多线程给内存子系统带来了巨大的压力,高效的带宽利用成为影响GPU吞吐量的关键因素。在这项工作中,我们提出线程批处理启用内存分区(TEMP),通过提高内存带宽利用率来提高GPU性能。特别是,TEMP将共享同一组页面的多个线程块聚集到一个线程批处理中,并将整个线程批处理分派给流多处理器。TEMP通过操作系统内存管理分离不同线程批次的内存访问流,保持线程批次的固有局部性并增加内存访问并行性。实验结果表明,与没有任何内存端优化的最先进调度器相比,TEMP可以获得高达10.3%的性能提升和14.6%的DRAM能耗降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TEMP: Thread batch enabled memory partitioning for GPU
As massive multi-threading in GPU imposes tremendous pressure on memory subsystems, efficient bandwidth utilization becomes a key factor affecting the GPU throughput. In this work, we propose thread batch enabled memory partitioning (TEMP), to improve GPU performance through the improvement of memory bandwidth utilization. In particular, TEMP clusters multiple thread blocks sharing the same set of pages into a thread batch and dispatches the entire thread batch to a stream multiprocessor. TEMP separates the memory access streams of different thread batches by OS memory management, preserving the intrinsic locality of thread batches and increasing the memory access parallelism. Experimental results show that TEMP can obtain up to 10.3% performance improvement and 14.6% DRAM energy reduction compared to a state-of-the-art scheduler without any memory-side optimizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信