高压P-GaN栅极hemt中总电离剂量辐射引起的栅极损伤

Zhao Wang, Xin Zhou, Zhanghua Wu, Chen Chen, Qi Zhou, M. Qiao, Zhaoji Li, Bo Zhang
{"title":"高压P-GaN栅极hemt中总电离剂量辐射引起的栅极损伤","authors":"Zhao Wang, Xin Zhou, Zhanghua Wu, Chen Chen, Qi Zhou, M. Qiao, Zhaoji Li, Bo Zhang","doi":"10.1109/ISPSD57135.2023.10147501","DOIUrl":null,"url":null,"abstract":"TID radiation induced damage in metal/p-GaN/AlGaN/GaN gate stack of p-GaN gate HEMTs is studied and the damage mechanisms highly correlated with electric field are revealed. For on-state bias, irradiation damages related to donor-like traps are located at the reverse-biased metal/p-GaN Schottky junction with high electric field. The depletion region in the Schottky junction would extend, and the trap-assisted tunneling mechanism could be introduced to increase the forward gate current. For off-state bias, irradiation damages are located at the reverse-biased p-GaN/AlGaN/GaN (p-i-n) junction in relation to holes trapped in the AlGaN barrier and the GaN channel. The energy barrier of the AlGaN barrier and the GaN channel would be lowered for electron injection, leading to reverse gate current and off-state drain leakage current increasing. Irradiation induced damage at the Schottky junction may be permanent, while the p-i-n junction damage is recoverable with time.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Total-Ionizing-Dose Radiation Induced Gate Damage in High Voltage P-GaN Gate HEMTs\",\"authors\":\"Zhao Wang, Xin Zhou, Zhanghua Wu, Chen Chen, Qi Zhou, M. Qiao, Zhaoji Li, Bo Zhang\",\"doi\":\"10.1109/ISPSD57135.2023.10147501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TID radiation induced damage in metal/p-GaN/AlGaN/GaN gate stack of p-GaN gate HEMTs is studied and the damage mechanisms highly correlated with electric field are revealed. For on-state bias, irradiation damages related to donor-like traps are located at the reverse-biased metal/p-GaN Schottky junction with high electric field. The depletion region in the Schottky junction would extend, and the trap-assisted tunneling mechanism could be introduced to increase the forward gate current. For off-state bias, irradiation damages are located at the reverse-biased p-GaN/AlGaN/GaN (p-i-n) junction in relation to holes trapped in the AlGaN barrier and the GaN channel. The energy barrier of the AlGaN barrier and the GaN channel would be lowered for electron injection, leading to reverse gate current and off-state drain leakage current increasing. Irradiation induced damage at the Schottky junction may be permanent, while the p-i-n junction damage is recoverable with time.\",\"PeriodicalId\":344266,\"journal\":{\"name\":\"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD57135.2023.10147501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了p-GaN栅极hemt金属/p-GaN/AlGaN/GaN栅极堆叠的TID辐射损伤,揭示了与电场高度相关的损伤机制。对于导态偏置,与供体样陷阱相关的辐照损伤位于高电场的反向偏置金属/p-GaN肖特基结。肖特基结的耗尽区会扩大,陷阱辅助隧道机制可以被引入来增加正向栅极电流。对于非态偏置,辐射损伤位于反向偏置的p-GaN/AlGaN/GaN (p-i-n)结,与被困在AlGaN势垒和GaN通道中的空穴有关。电子注入会降低氮化镓势垒和氮化镓通道的能垒,导致反向栅极电流和失态漏极电流增大。辐射引起的肖特基结损伤可能是永久性的,而p-i-n结损伤随时间的推移是可恢复的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Total-Ionizing-Dose Radiation Induced Gate Damage in High Voltage P-GaN Gate HEMTs
TID radiation induced damage in metal/p-GaN/AlGaN/GaN gate stack of p-GaN gate HEMTs is studied and the damage mechanisms highly correlated with electric field are revealed. For on-state bias, irradiation damages related to donor-like traps are located at the reverse-biased metal/p-GaN Schottky junction with high electric field. The depletion region in the Schottky junction would extend, and the trap-assisted tunneling mechanism could be introduced to increase the forward gate current. For off-state bias, irradiation damages are located at the reverse-biased p-GaN/AlGaN/GaN (p-i-n) junction in relation to holes trapped in the AlGaN barrier and the GaN channel. The energy barrier of the AlGaN barrier and the GaN channel would be lowered for electron injection, leading to reverse gate current and off-state drain leakage current increasing. Irradiation induced damage at the Schottky junction may be permanent, while the p-i-n junction damage is recoverable with time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信