以创新的节能减排方法绿化铸造行业

J. Selvaraj, K. I. Ramachandran, D. Venkatesh, S. Devanathan
{"title":"以创新的节能减排方法绿化铸造行业","authors":"J. Selvaraj, K. I. Ramachandran, D. Venkatesh, S. Devanathan","doi":"10.1109/ISCO.2014.7103919","DOIUrl":null,"url":null,"abstract":"Foundries are known for their energy intensiveness and environmental pollution. More than 50 % of the energy consumed by the foundries is spent in melting the raw materials and this energy goes waste while molten metal solidifies in sand molds. This paper aims at harvesting that waste heat liberated from molten metal, using the harvested heat to preheat the scraps that are embedded into the sand molds. This preheated scraps when melted for the next batch, the energy consumption in the furnace is reduced by 12 %. This energy conservation is a novel approach and readily gives rise to environmental benefits by reducing energy-related emissions. This method also improves the recyclability of the foundry sand, since the peak sand temperature reduces by more than 100 K, making this method doubly environmental-friendly.","PeriodicalId":119329,"journal":{"name":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Greening the foundry sector by an innovative method of energy conservation and emission reduction\",\"authors\":\"J. Selvaraj, K. I. Ramachandran, D. Venkatesh, S. Devanathan\",\"doi\":\"10.1109/ISCO.2014.7103919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foundries are known for their energy intensiveness and environmental pollution. More than 50 % of the energy consumed by the foundries is spent in melting the raw materials and this energy goes waste while molten metal solidifies in sand molds. This paper aims at harvesting that waste heat liberated from molten metal, using the harvested heat to preheat the scraps that are embedded into the sand molds. This preheated scraps when melted for the next batch, the energy consumption in the furnace is reduced by 12 %. This energy conservation is a novel approach and readily gives rise to environmental benefits by reducing energy-related emissions. This method also improves the recyclability of the foundry sand, since the peak sand temperature reduces by more than 100 K, making this method doubly environmental-friendly.\",\"PeriodicalId\":119329,\"journal\":{\"name\":\"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCO.2014.7103919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2014.7103919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

铸造厂以其能源密集型和环境污染而闻名。铸造厂消耗的50%以上的能源用于熔化原材料,而这些能源在熔融金属在砂型中凝固时被浪费掉了。本文旨在收集从熔融金属中释放的废热,利用收集到的热量预热嵌入砂型的废料。这种预热后的废料在熔化时用于下一批,使炉内能耗降低了12%。这种节能是一种新颖的方法,通过减少与能源有关的排放,很容易产生环境效益。该方法还提高了铸造砂的可回收性,因为砂的峰值温度降低了100 K以上,使该方法更加环保。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Greening the foundry sector by an innovative method of energy conservation and emission reduction
Foundries are known for their energy intensiveness and environmental pollution. More than 50 % of the energy consumed by the foundries is spent in melting the raw materials and this energy goes waste while molten metal solidifies in sand molds. This paper aims at harvesting that waste heat liberated from molten metal, using the harvested heat to preheat the scraps that are embedded into the sand molds. This preheated scraps when melted for the next batch, the energy consumption in the furnace is reduced by 12 %. This energy conservation is a novel approach and readily gives rise to environmental benefits by reducing energy-related emissions. This method also improves the recyclability of the foundry sand, since the peak sand temperature reduces by more than 100 K, making this method doubly environmental-friendly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信