基于四元数勒让德-傅立叶矩的彩色图像重建

C. Camacho-Bello, J. J. Báez-Rojas, C. Toxqui-Quitl, A. Padilla-Vivanco
{"title":"基于四元数勒让德-傅立叶矩的彩色图像重建","authors":"C. Camacho-Bello, J. J. Báez-Rojas, C. Toxqui-Quitl, A. Padilla-Vivanco","doi":"10.1109/ICMEAE.2014.34","DOIUrl":null,"url":null,"abstract":"Color image reconstruction provides a measure of the feature representation capability of the moment functions. In this work, we present the quaternion Fourier-Legendre moments in polar pixels, which are computationally faster and have a high-precision compared with other methods. In addition, to improve the performance of the array of polar pixels, we use an inherent property of the Legendre polynomials for the accurate calculation of kernel integration. Moreover, the presented new set of quaternion Fourier-Legendre moments is compared with other families proposed, such as quaternion Zernike moments, quaternion pseudo-Zernike moments, quaternion orthogonal Fourier-Mellin moments, and quaternion Bessel-Fourier moments. Experimental results show the superiority of the new quaternion moments in terms of the reconstruction error.","PeriodicalId":252737,"journal":{"name":"2014 International Conference on Mechatronics, Electronics and Automotive Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Color Image Reconstruction Using Quaternion Legendre-Fourier Moments in Polar Pixels\",\"authors\":\"C. Camacho-Bello, J. J. Báez-Rojas, C. Toxqui-Quitl, A. Padilla-Vivanco\",\"doi\":\"10.1109/ICMEAE.2014.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color image reconstruction provides a measure of the feature representation capability of the moment functions. In this work, we present the quaternion Fourier-Legendre moments in polar pixels, which are computationally faster and have a high-precision compared with other methods. In addition, to improve the performance of the array of polar pixels, we use an inherent property of the Legendre polynomials for the accurate calculation of kernel integration. Moreover, the presented new set of quaternion Fourier-Legendre moments is compared with other families proposed, such as quaternion Zernike moments, quaternion pseudo-Zernike moments, quaternion orthogonal Fourier-Mellin moments, and quaternion Bessel-Fourier moments. Experimental results show the superiority of the new quaternion moments in terms of the reconstruction error.\",\"PeriodicalId\":252737,\"journal\":{\"name\":\"2014 International Conference on Mechatronics, Electronics and Automotive Engineering\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Mechatronics, Electronics and Automotive Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEAE.2014.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Mechatronics, Electronics and Automotive Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2014.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

彩色图像重建提供了一种测量矩函数特征表示能力的方法。在这项工作中,我们提出了极像素的傅里叶-勒让德矩四元数,与其他方法相比,它的计算速度更快,精度更高。此外,为了提高极像素阵列的性能,我们利用勒让德多项式的固有性质来精确计算核积分。此外,将所提出的四元数傅里叶-勒让德矩与其他四元数Zernike矩、四元数伪Zernike矩、四元数正交Fourier-Mellin矩和四元数贝塞尔-傅里叶矩进行了比较。实验结果表明,新四元数矩在重构误差方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color Image Reconstruction Using Quaternion Legendre-Fourier Moments in Polar Pixels
Color image reconstruction provides a measure of the feature representation capability of the moment functions. In this work, we present the quaternion Fourier-Legendre moments in polar pixels, which are computationally faster and have a high-precision compared with other methods. In addition, to improve the performance of the array of polar pixels, we use an inherent property of the Legendre polynomials for the accurate calculation of kernel integration. Moreover, the presented new set of quaternion Fourier-Legendre moments is compared with other families proposed, such as quaternion Zernike moments, quaternion pseudo-Zernike moments, quaternion orthogonal Fourier-Mellin moments, and quaternion Bessel-Fourier moments. Experimental results show the superiority of the new quaternion moments in terms of the reconstruction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信