背景噪声下基于小波去噪和2DCNN的故障诊断方法

Kexin Liu, Zhe Li, Wenbin He, Jia Peng, Xudong Wang, Yaonan Wang
{"title":"背景噪声下基于小波去噪和2DCNN的故障诊断方法","authors":"Kexin Liu, Zhe Li, Wenbin He, Jia Peng, Xudong Wang, Yaonan Wang","doi":"10.1109/DDCLS58216.2023.10167183","DOIUrl":null,"url":null,"abstract":"This paper develops a novel method named wavelet denoising convolutional neural network (WDECNN) for fault diagnosis with background noise. The continuous wavelet transform (CWT) is first applied to transform the measured raw vibration data into time-frequency images which serve as the inputs of WDECNN. Then, a light-weight two-dimensional CNN (2DCNN) model is incorporated in WDECNN to simplify the network architecture, while a wavelet denoising module is also applied in it to achieve high accuracy of fault identification in the noisy environment. Particularly, the wavelet denoising module which consists of wavelet decomposition and denoising is parallel to the 2DCNN model, and the denoising results are integrated into pooling layers in the 2DCNN model. Thus, the denoised information is added to the 2DCNN model to improve its feature learning ability. Finally, the effectiveness of the developed method is validated on Paderborn bearing dataset, which illustrates its fault diagnosis capability under background noise.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fault Diagnosis Method Based on Wavelet Denoising and 2DCNN under Background Noise\",\"authors\":\"Kexin Liu, Zhe Li, Wenbin He, Jia Peng, Xudong Wang, Yaonan Wang\",\"doi\":\"10.1109/DDCLS58216.2023.10167183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a novel method named wavelet denoising convolutional neural network (WDECNN) for fault diagnosis with background noise. The continuous wavelet transform (CWT) is first applied to transform the measured raw vibration data into time-frequency images which serve as the inputs of WDECNN. Then, a light-weight two-dimensional CNN (2DCNN) model is incorporated in WDECNN to simplify the network architecture, while a wavelet denoising module is also applied in it to achieve high accuracy of fault identification in the noisy environment. Particularly, the wavelet denoising module which consists of wavelet decomposition and denoising is parallel to the 2DCNN model, and the denoising results are integrated into pooling layers in the 2DCNN model. Thus, the denoised information is added to the 2DCNN model to improve its feature learning ability. Finally, the effectiveness of the developed method is validated on Paderborn bearing dataset, which illustrates its fault diagnosis capability under background noise.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10167183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10167183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于小波去噪卷积神经网络(WDECNN)的故障诊断方法。首先利用连续小波变换(CWT)将实测的原始振动数据转换成时频图像,作为WDECNN的输入。然后,在WDECNN中加入轻量级二维CNN (2DCNN)模型,简化网络结构,并在其中加入小波去噪模块,在噪声环境下实现较高的故障识别精度。其中,由小波分解和去噪组成的小波去噪模块与2DCNN模型并行,去噪结果集成到2DCNN模型的池化层中。因此,将去噪后的信息加入到2DCNN模型中,以提高其特征学习能力。最后,在帕德博恩轴承数据集上验证了该方法的有效性,验证了该方法在背景噪声下的故障诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fault Diagnosis Method Based on Wavelet Denoising and 2DCNN under Background Noise
This paper develops a novel method named wavelet denoising convolutional neural network (WDECNN) for fault diagnosis with background noise. The continuous wavelet transform (CWT) is first applied to transform the measured raw vibration data into time-frequency images which serve as the inputs of WDECNN. Then, a light-weight two-dimensional CNN (2DCNN) model is incorporated in WDECNN to simplify the network architecture, while a wavelet denoising module is also applied in it to achieve high accuracy of fault identification in the noisy environment. Particularly, the wavelet denoising module which consists of wavelet decomposition and denoising is parallel to the 2DCNN model, and the denoising results are integrated into pooling layers in the 2DCNN model. Thus, the denoised information is added to the 2DCNN model to improve its feature learning ability. Finally, the effectiveness of the developed method is validated on Paderborn bearing dataset, which illustrates its fault diagnosis capability under background noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信