新型低热预算CMOS RMG:相对于传统高热预算栅极堆栈解决方案的性能和可靠性基准

J. Franco, H. Arimura, J. D. Marneffe, S. Brus, R. Ritzenthaler, E. Litta, K. Croes, B. Kaczer, N. Horiguchi
{"title":"新型低热预算CMOS RMG:相对于传统高热预算栅极堆栈解决方案的性能和可靠性基准","authors":"J. Franco, H. Arimura, J. D. Marneffe, S. Brus, R. Ritzenthaler, E. Litta, K. Croes, B. Kaczer, N. Horiguchi","doi":"10.23919/VLSITechnologyandCir57934.2023.10185317","DOIUrl":null,"url":null,"abstract":"Low thermal budget gate stack fabrication is a key enabler for several upcoming CMOS technology innovations. For transistor stacking in Sequential 3D integrations, top device tiers need to be fabricated at reduced thermal budget [1] to preserve the functionality of the bottom tiers already in place. For monolithic CFET [2] fabrication, in a “RMGlast” flow the high temperature T reliability anneal $(\\sim 850^{\\circ}\\mathrm{C},\\sim 1.5\\mathrm{~s}$. spike) customarily used in conventional HKMG stacks to cure dielectric defects [3] can degrade the contact performance; conversely, moving the RMG module to earlier in the flow (\"RMG-first”) would impose thermal stability requirements for the HKMG stacks to endure the epi and contact module thermal budget (max $\\mathrm{T}\\sim 525^{\\circ}\\mathrm{C}$ for several hours), which would be particularly challenging for the tight effective Work Function (eWF) control [4] required by multi- $V_{\\text{th}}$ technologies. The development of novel low thermal budget gate stack solutions (Fig. 1) with competitive performance and reliability as compared to state-of-the-art RMG discussed here addresses these concerns.","PeriodicalId":317958,"journal":{"name":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Low Thermal Budget CMOS RMG: Performance and Reliability Benchmark Against Conventional High Thermal Budget Gate Stack Solutions\",\"authors\":\"J. Franco, H. Arimura, J. D. Marneffe, S. Brus, R. Ritzenthaler, E. Litta, K. Croes, B. Kaczer, N. Horiguchi\",\"doi\":\"10.23919/VLSITechnologyandCir57934.2023.10185317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low thermal budget gate stack fabrication is a key enabler for several upcoming CMOS technology innovations. For transistor stacking in Sequential 3D integrations, top device tiers need to be fabricated at reduced thermal budget [1] to preserve the functionality of the bottom tiers already in place. For monolithic CFET [2] fabrication, in a “RMGlast” flow the high temperature T reliability anneal $(\\\\sim 850^{\\\\circ}\\\\mathrm{C},\\\\sim 1.5\\\\mathrm{~s}$. spike) customarily used in conventional HKMG stacks to cure dielectric defects [3] can degrade the contact performance; conversely, moving the RMG module to earlier in the flow (\\\"RMG-first”) would impose thermal stability requirements for the HKMG stacks to endure the epi and contact module thermal budget (max $\\\\mathrm{T}\\\\sim 525^{\\\\circ}\\\\mathrm{C}$ for several hours), which would be particularly challenging for the tight effective Work Function (eWF) control [4] required by multi- $V_{\\\\text{th}}$ technologies. The development of novel low thermal budget gate stack solutions (Fig. 1) with competitive performance and reliability as compared to state-of-the-art RMG discussed here addresses these concerns.\",\"PeriodicalId\":317958,\"journal\":{\"name\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低热预算栅极堆栈制造是几个即将到来的CMOS技术创新的关键推动因素。对于顺序3D集成中的晶体管堆叠,需要在减少热预算的情况下制造顶层器件层[1],以保留底层的功能。对于单片CFET[2]的制造,在“RMGlast”流中,高温T可靠性退火$(\sim 850^{\circ}\ mathm {C},\sim 1.5\ mathm {~s}$。传统HKMG电堆中用于修复介电缺陷的尖峰(spike)[3]会降低接触性能;相反,将RMG模块移动到流的早期(“RMG优先”)将对HKMG堆栈施加热稳定性要求,以承受epi和接触模块热预算(max $\ mathm {T}\sim 525^{\circ}\ mathm {C}$持续数小时),这对于多$V_{\text{th}}$技术所需的严格有效功函数(eWF)控制[4]尤其具有挑战性。与本文讨论的最先进的RMG相比,具有竞争力的性能和可靠性的新型低热预算门堆解决方案(图1)的开发解决了这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Low Thermal Budget CMOS RMG: Performance and Reliability Benchmark Against Conventional High Thermal Budget Gate Stack Solutions
Low thermal budget gate stack fabrication is a key enabler for several upcoming CMOS technology innovations. For transistor stacking in Sequential 3D integrations, top device tiers need to be fabricated at reduced thermal budget [1] to preserve the functionality of the bottom tiers already in place. For monolithic CFET [2] fabrication, in a “RMGlast” flow the high temperature T reliability anneal $(\sim 850^{\circ}\mathrm{C},\sim 1.5\mathrm{~s}$. spike) customarily used in conventional HKMG stacks to cure dielectric defects [3] can degrade the contact performance; conversely, moving the RMG module to earlier in the flow ("RMG-first”) would impose thermal stability requirements for the HKMG stacks to endure the epi and contact module thermal budget (max $\mathrm{T}\sim 525^{\circ}\mathrm{C}$ for several hours), which would be particularly challenging for the tight effective Work Function (eWF) control [4] required by multi- $V_{\text{th}}$ technologies. The development of novel low thermal budget gate stack solutions (Fig. 1) with competitive performance and reliability as compared to state-of-the-art RMG discussed here addresses these concerns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信