{"title":"量子计算模型中的Sobolev近似","authors":"Peixin Ye, Xiuhua Yuan","doi":"10.1109/ICICTA.2011.69","DOIUrl":null,"url":null,"abstract":"Using a new and elegant reduction approach we derive a lower bound of quantum complexity for the approximation of imbeddings from anisotropic Sobolev classes B(Wrp([0,1]d)) to anisotropic Sobolev space Wsp([0,1]d) for all 1 ? p, q ? ?, When p ? q we show this bound is optimal by deriving the matching upper bound. In this case the quantum algorithms are not significantly better than the classical deterministic or randomized algorithms.","PeriodicalId":368130,"journal":{"name":"2011 Fourth International Conference on Intelligent Computation Technology and Automation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sobolev Approximation in the Quantum Computation Model\",\"authors\":\"Peixin Ye, Xiuhua Yuan\",\"doi\":\"10.1109/ICICTA.2011.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a new and elegant reduction approach we derive a lower bound of quantum complexity for the approximation of imbeddings from anisotropic Sobolev classes B(Wrp([0,1]d)) to anisotropic Sobolev space Wsp([0,1]d) for all 1 ? p, q ? ?, When p ? q we show this bound is optimal by deriving the matching upper bound. In this case the quantum algorithms are not significantly better than the classical deterministic or randomized algorithms.\",\"PeriodicalId\":368130,\"journal\":{\"name\":\"2011 Fourth International Conference on Intelligent Computation Technology and Automation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Intelligent Computation Technology and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICTA.2011.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Intelligent Computation Technology and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2011.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sobolev Approximation in the Quantum Computation Model
Using a new and elegant reduction approach we derive a lower bound of quantum complexity for the approximation of imbeddings from anisotropic Sobolev classes B(Wrp([0,1]d)) to anisotropic Sobolev space Wsp([0,1]d) for all 1 ? p, q ? ?, When p ? q we show this bound is optimal by deriving the matching upper bound. In this case the quantum algorithms are not significantly better than the classical deterministic or randomized algorithms.