基于迭代序列GSVD (I-S-GSVD)的预白化方法在不知道噪声协方差信息的情况下进行多维HOSVD子空间估计

J. Costa, F. Roemer, M. Haardt
{"title":"基于迭代序列GSVD (I-S-GSVD)的预白化方法在不知道噪声协方差信息的情况下进行多维HOSVD子空间估计","authors":"J. Costa, F. Roemer, M. Haardt","doi":"10.1109/WSA.2010.5456459","DOIUrl":null,"url":null,"abstract":"Recently, the Sequential GSVD (S-GSVD) based prewhitening scheme has been proposed to improve R-dimensional subspace-based parameter estimation schemes in the presence of colored noise or interference with Kronecker structure. To apply the S-GSVD, second order statistics of the noise should be estimated, e.g., via samples captured in the absence of the desired signal components. In this contribution, we propose the Iterative Sequential Generalized Singular Value Decomposition (I-S-GSVD) based prewhitening scheme for multidimensional HOSVD based subspace estimation when information about the noise statistics is not available. Even without the availability of samples in the absence of the desired signals components, it is possible to obtain the prewhitening correlation factors and the signal parameters in an iterative way using a deterministic algorithm in combination with the S-GSVD. This combination constitutes our proposed I-S-GSVD. Finally, the I-S-GSVD inherits the computational efficiency from the S-GSVD compared to matrix based prewhitening schemes.","PeriodicalId":311394,"journal":{"name":"2010 International ITG Workshop on Smart Antennas (WSA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Iterative Sequential GSVD (I-S-GSVD) based prewhitening for multidimensional HOSVD based subspace estimation without knowledge of the noise covariance information\",\"authors\":\"J. Costa, F. Roemer, M. Haardt\",\"doi\":\"10.1109/WSA.2010.5456459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the Sequential GSVD (S-GSVD) based prewhitening scheme has been proposed to improve R-dimensional subspace-based parameter estimation schemes in the presence of colored noise or interference with Kronecker structure. To apply the S-GSVD, second order statistics of the noise should be estimated, e.g., via samples captured in the absence of the desired signal components. In this contribution, we propose the Iterative Sequential Generalized Singular Value Decomposition (I-S-GSVD) based prewhitening scheme for multidimensional HOSVD based subspace estimation when information about the noise statistics is not available. Even without the availability of samples in the absence of the desired signals components, it is possible to obtain the prewhitening correlation factors and the signal parameters in an iterative way using a deterministic algorithm in combination with the S-GSVD. This combination constitutes our proposed I-S-GSVD. Finally, the I-S-GSVD inherits the computational efficiency from the S-GSVD compared to matrix based prewhitening schemes.\",\"PeriodicalId\":311394,\"journal\":{\"name\":\"2010 International ITG Workshop on Smart Antennas (WSA)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International ITG Workshop on Smart Antennas (WSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSA.2010.5456459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International ITG Workshop on Smart Antennas (WSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSA.2010.5456459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

近年来,针对存在彩色噪声或Kronecker结构干扰的r维子空间参数估计方案,提出了基于序贯GSVD (S-GSVD)的预白化方案。为了应用S-GSVD,应该估计噪声的二阶统计量,例如,通过在缺乏所需信号分量的情况下捕获的样本。在本文中,我们提出了基于迭代序列广义奇异值分解(I-S-GSVD)的预白化方案,用于在噪声统计信息不可用的情况下基于多维HOSVD的子空间估计。即使在没有所需信号成分的情况下没有可用的样本,也可以使用确定性算法结合S-GSVD以迭代的方式获得预白化相关因子和信号参数。这种组合构成了我们提出的I-S-GSVD。最后,与基于矩阵的预白化方案相比,I-S-GSVD继承了S-GSVD的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative Sequential GSVD (I-S-GSVD) based prewhitening for multidimensional HOSVD based subspace estimation without knowledge of the noise covariance information
Recently, the Sequential GSVD (S-GSVD) based prewhitening scheme has been proposed to improve R-dimensional subspace-based parameter estimation schemes in the presence of colored noise or interference with Kronecker structure. To apply the S-GSVD, second order statistics of the noise should be estimated, e.g., via samples captured in the absence of the desired signal components. In this contribution, we propose the Iterative Sequential Generalized Singular Value Decomposition (I-S-GSVD) based prewhitening scheme for multidimensional HOSVD based subspace estimation when information about the noise statistics is not available. Even without the availability of samples in the absence of the desired signals components, it is possible to obtain the prewhitening correlation factors and the signal parameters in an iterative way using a deterministic algorithm in combination with the S-GSVD. This combination constitutes our proposed I-S-GSVD. Finally, the I-S-GSVD inherits the computational efficiency from the S-GSVD compared to matrix based prewhitening schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信