结合多元线性回归与自回归模型和卡尔曼滤波的关节角预测

F. Xiao, Yongsheng Gao, Shengxin Wang, Jie Zhao
{"title":"结合多元线性回归与自回归模型和卡尔曼滤波的关节角预测","authors":"F. Xiao, Yongsheng Gao, Shengxin Wang, Jie Zhao","doi":"10.1109/ROBIO.2015.7418925","DOIUrl":null,"url":null,"abstract":"In this paper, a new prediction algorithm combining multiple linear regression with autoregressive model and Kalman filter (MLRAR-KF) is proposed to predict the elbow joint angle. The MLRAR model updating weights with Kalman filter is shown to be able to predict joint motion with high accuracy and well robustness. In comparison to existing prediction algorithms, MLRAR-KF can predict joint angle with higher accuracy and better robustness. A data acquisition system was used to collect sEMG and elbow joint angle signals of human upper limb. The experimental results demonstrate the benefits of MLRAR-KF prediction algorithm. Comparison of computational complexity about some existing prediction methods and MLRAR-KF is conducted to analyze the real-time performance.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of joint angle by combining multiple linear regression with autoregressive (AR) model and Kalman filter\",\"authors\":\"F. Xiao, Yongsheng Gao, Shengxin Wang, Jie Zhao\",\"doi\":\"10.1109/ROBIO.2015.7418925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new prediction algorithm combining multiple linear regression with autoregressive model and Kalman filter (MLRAR-KF) is proposed to predict the elbow joint angle. The MLRAR model updating weights with Kalman filter is shown to be able to predict joint motion with high accuracy and well robustness. In comparison to existing prediction algorithms, MLRAR-KF can predict joint angle with higher accuracy and better robustness. A data acquisition system was used to collect sEMG and elbow joint angle signals of human upper limb. The experimental results demonstrate the benefits of MLRAR-KF prediction algorithm. Comparison of computational complexity about some existing prediction methods and MLRAR-KF is conducted to analyze the real-time performance.\",\"PeriodicalId\":325536,\"journal\":{\"name\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2015.7418925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7418925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种将多元线性回归与自回归模型和卡尔曼滤波相结合的肘关节角度预测算法(MLRAR-KF)。结果表明,基于卡尔曼滤波的MLRAR模型能较好地预测关节运动,具有较高的精度和较好的鲁棒性。与现有预测算法相比,MLRAR-KF对关节角度的预测精度更高,鲁棒性更好。采用数据采集系统采集人体上肢的表面肌电信号和肘关节角度信号。实验结果证明了MLRAR-KF预测算法的优越性。比较了现有几种预测方法与MLRAR-KF的计算复杂度,分析了其实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of joint angle by combining multiple linear regression with autoregressive (AR) model and Kalman filter
In this paper, a new prediction algorithm combining multiple linear regression with autoregressive model and Kalman filter (MLRAR-KF) is proposed to predict the elbow joint angle. The MLRAR model updating weights with Kalman filter is shown to be able to predict joint motion with high accuracy and well robustness. In comparison to existing prediction algorithms, MLRAR-KF can predict joint angle with higher accuracy and better robustness. A data acquisition system was used to collect sEMG and elbow joint angle signals of human upper limb. The experimental results demonstrate the benefits of MLRAR-KF prediction algorithm. Comparison of computational complexity about some existing prediction methods and MLRAR-KF is conducted to analyze the real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信