欧氏空间中平均曲率流的平移孤子的半空间型定理

Daehwan Kim, Juncheol Pyo
{"title":"欧氏空间中平均曲率流的平移孤子的半空间型定理","authors":"Daehwan Kim, Juncheol Pyo","doi":"10.1090/BPROC/67","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we determine which half-space contains a complete translating soliton of the mean curvature flow and it is related to the well-known half-space theorem for minimal surfaces. We prove that a complete translating soliton does not exist with respect to the velocity <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {v}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in a closed half-space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H Subscript normal v overTilde Baseline equals left-brace x element-of double-struck upper R Superscript n plus 1 Baseline bar mathematical left-angle x comma normal v overTilde mathematical right-angle less-than-or-equal-to 0 right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∣<!-- ∣ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}_{\\widetilde {{\\mathrm {v}}}}= \\{ x \\in \\mathbb {R}^{n+1} \\mid \\langle x, \\widetilde {{\\mathrm {v}}}\\rangle \\leq 0 \\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle normal v comma normal v overTilde mathematical right-angle greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle {\\mathrm {v}}, \\widetilde {{\\mathrm {v}}} \\rangle > 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, whereas in a half-space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H Subscript normal v overTilde\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">H</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}_{\\widetilde {{\\mathrm {v}}}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mathematical left-angle normal v comma normal v overTilde mathematical right-angle less-than-or-equal-to 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>~<!-- ~ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\langle {\\mathrm {v}}, \\widetilde {{\\mathrm {v}}} \\rangle \\leq 0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, a complete translating soliton can be found. In addition, we extend this property to cones: there are no complete translating solitons with respect to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{\\mathrm {v}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in a right circular cone <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C Subscript normal v comma a Baseline equals left-brace x element-of double-struck upper R Superscript n plus 1 Baseline bar mathematical left-angle StartFraction x Over double-vertical-bar x double-vertical-bar EndFraction comma normal v mathematical right-angle less-than-or-equal-to a greater-than 1 right-brace\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>C</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n <mml:mi>a</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>=</mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∣<!-- ∣ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\n <mml:mfrac>\n <mml:mi>x</mml:mi>\n <mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>x</mml:mi>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n </mml:mrow>\n </mml:mfrac>\n <mml:mo>,</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>a</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">C_{ {{\\mathrm {v}}}, a}=\\{ x \\in \\mathbb {R}^{n+1} \\mid \\langle \\frac {x}{\\|x\\|} , {{\\mathrm {v}}} \\rangle \\leq a > 1 \\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Half-space type theorem for translating solitons of the mean curvature flow in Euclidean space\",\"authors\":\"Daehwan Kim, Juncheol Pyo\",\"doi\":\"10.1090/BPROC/67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we determine which half-space contains a complete translating soliton of the mean curvature flow and it is related to the well-known half-space theorem for minimal surfaces. We prove that a complete translating soliton does not exist with respect to the velocity <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal v\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathrm {v}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in a closed half-space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper H Subscript normal v overTilde Baseline equals left-brace x element-of double-struck upper R Superscript n plus 1 Baseline bar mathematical left-angle x comma normal v overTilde mathematical right-angle less-than-or-equal-to 0 right-brace\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>=</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>∣<!-- ∣ --></mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {H}_{\\\\widetilde {{\\\\mathrm {v}}}}= \\\\{ x \\\\in \\\\mathbb {R}^{n+1} \\\\mid \\\\langle x, \\\\widetilde {{\\\\mathrm {v}}}\\\\rangle \\\\leq 0 \\\\}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mathematical left-angle normal v comma normal v overTilde mathematical right-angle greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\langle {\\\\mathrm {v}}, \\\\widetilde {{\\\\mathrm {v}}} \\\\rangle > 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, whereas in a half-space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper H Subscript normal v overTilde\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">H</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {H}_{\\\\widetilde {{\\\\mathrm {v}}}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mathematical left-angle normal v comma normal v overTilde mathematical right-angle less-than-or-equal-to 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>~<!-- ~ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\langle {\\\\mathrm {v}}, \\\\widetilde {{\\\\mathrm {v}}} \\\\rangle \\\\leq 0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, a complete translating soliton can be found. In addition, we extend this property to cones: there are no complete translating solitons with respect to <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal v\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">{\\\\mathrm {v}}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in a right circular cone <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C Subscript normal v comma a Baseline equals left-brace x element-of double-struck upper R Superscript n plus 1 Baseline bar mathematical left-angle StartFraction x Over double-vertical-bar x double-vertical-bar EndFraction comma normal v mathematical right-angle less-than-or-equal-to a greater-than 1 right-brace\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi>C</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo>,</mml:mo>\\n <mml:mi>a</mml:mi>\\n </mml:mrow>\\n </mml:msub>\\n <mml:mo>=</mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo>∈<!-- ∈ --></mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi>n</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo>∣<!-- ∣ --></mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟨<!-- ⟨ --></mml:mo>\\n <mml:mfrac>\\n <mml:mi>x</mml:mi>\\n <mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi>x</mml:mi>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n </mml:mrow>\\n </mml:mfrac>\\n <mml:mo>,</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">v</mml:mi>\\n </mml:mrow>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩<!-- ⟩ --></mml:mo>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mi>a</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">C_{ {{\\\\mathrm {v}}}, a}=\\\\{ x \\\\in \\\\mathbb {R}^{n+1} \\\\mid \\\\langle \\\\frac {x}{\\\\|x\\\\|} , {{\\\\mathrm {v}}} \\\\rangle \\\\leq a > 1 \\\\}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/BPROC/67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BPROC/67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们确定了哪个半空间包含平均曲率流的完全平移孤子,这与众所周知的最小曲面的半空间定理有关。证明了在闭半空间H v = v{\mathrm v不存在完全平移孤子x, v⟩≤0 {}}{}\mathcal H_{}{\widetilde{{\mathrm v{= {x }}}}\in\mathbb R{^}n+1{}\mid\langle x, \widetilde{{\mathrm v{}}}\rangle\leq 0} for⟨v,v⟩> 0 \langle{\mathrm v{, }}\widetilde{{\mathrm v{}}}\rangle > 0,而在半空间中H v \mathcal H_{}{\widetilde{{\mathrm v{,⟨v, v⟩≤0 }}}}\langle{\mathrm v{, }}\widetilde{{\mathrm v{}}}\rangle\leq 0,可以找到一个完整的翻译孤子。此外,我们将这个性质推广到锥:在直角圆锥C v中没有关于v{\mathrm v的完全平移{孤子,a= x∈R n+1∣⟨x‖x‖,}}v⟩≤a > 1{ C_ }{{{\mathrm v{, a}}}={x}\in\mathbb R{^}n+1{}\mid\langle\frac x\|x\|,{}{}{{\mathrm v {}}}\rangle\leq a > 1}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Half-space type theorem for translating solitons of the mean curvature flow in Euclidean space

In this paper, we determine which half-space contains a complete translating soliton of the mean curvature flow and it is related to the well-known half-space theorem for minimal surfaces. We prove that a complete translating soliton does not exist with respect to the velocity v {\mathrm {v}} in a closed half-space H v ~ = { x R n + 1 x , v ~ 0 } \mathcal {H}_{\widetilde {{\mathrm {v}}}}= \{ x \in \mathbb {R}^{n+1} \mid \langle x, \widetilde {{\mathrm {v}}}\rangle \leq 0 \} for v , v ~ > 0 \langle {\mathrm {v}}, \widetilde {{\mathrm {v}}} \rangle > 0 , whereas in a half-space H v ~ \mathcal {H}_{\widetilde {{\mathrm {v}}}} , v , v ~ 0 \langle {\mathrm {v}}, \widetilde {{\mathrm {v}}} \rangle \leq 0 , a complete translating soliton can be found. In addition, we extend this property to cones: there are no complete translating solitons with respect to v {\mathrm {v}} in a right circular cone C v , a = { x R n + 1 x x , v a > 1 } C_{ {{\mathrm {v}}}, a}=\{ x \in \mathbb {R}^{n+1} \mid \langle \frac {x}{\|x\|} , {{\mathrm {v}}} \rangle \leq a > 1 \} .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信