基于硬件加速神经网络的SRAM结构容错性测量

Sangheon Kwon, Kyungmin Lee, Yoonsoo Kim, Kyungah Kim, Changmin Lee, W. Ro
{"title":"基于硬件加速神经网络的SRAM结构容错性测量","authors":"Sangheon Kwon, Kyungmin Lee, Yoonsoo Kim, Kyungah Kim, Changmin Lee, W. Ro","doi":"10.1109/ICCE-ASIA.2016.7804818","DOIUrl":null,"url":null,"abstract":"Hardware accelerators for convolutional neural network (CNN) accompany a large amount of SRAM in order to reduce the number of expensive off-chip DRAM accesses. This design trend gives implications to architects: the SRAM area will dominate the entire chip area for the future CNN accelerators. Since the probability of soft errors such as energetic particle strikes goes as the density of SRAM, errors on memory sub-system will become a major concern as process technology scales. In this paper, we investigate the necessity of a fault-tolerant memory system, against such soft errors, in hardware accelerated neural network. We found that convolutional layers have different error tolerance from each other. The error tolerance of a layer tends to get worse as it goes on the output layer.","PeriodicalId":229557,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Measuring error-tolerance in SRAM architecture on hardware accelerated neural network\",\"authors\":\"Sangheon Kwon, Kyungmin Lee, Yoonsoo Kim, Kyungah Kim, Changmin Lee, W. Ro\",\"doi\":\"10.1109/ICCE-ASIA.2016.7804818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware accelerators for convolutional neural network (CNN) accompany a large amount of SRAM in order to reduce the number of expensive off-chip DRAM accesses. This design trend gives implications to architects: the SRAM area will dominate the entire chip area for the future CNN accelerators. Since the probability of soft errors such as energetic particle strikes goes as the density of SRAM, errors on memory sub-system will become a major concern as process technology scales. In this paper, we investigate the necessity of a fault-tolerant memory system, against such soft errors, in hardware accelerated neural network. We found that convolutional layers have different error tolerance from each other. The error tolerance of a layer tends to get worse as it goes on the output layer.\",\"PeriodicalId\":229557,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-ASIA.2016.7804818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-ASIA.2016.7804818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

卷积神经网络(CNN)的硬件加速器伴随着大量的SRAM,以减少昂贵的片外DRAM访问次数。这种设计趋势给架构师带来了启示:SRAM领域将主导未来CNN加速器的整个芯片领域。由于高能粒子撞击等软错误的概率随SRAM密度的增大而增大,随着工艺技术的发展,存储子系统的错误将成为一个主要问题。在本文中,我们研究了在硬件加速神经网络中容错存储系统的必要性,以对抗这种软错误。我们发现卷积层之间具有不同的容错性。层的容错能力在输出层上变得越来越差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring error-tolerance in SRAM architecture on hardware accelerated neural network
Hardware accelerators for convolutional neural network (CNN) accompany a large amount of SRAM in order to reduce the number of expensive off-chip DRAM accesses. This design trend gives implications to architects: the SRAM area will dominate the entire chip area for the future CNN accelerators. Since the probability of soft errors such as energetic particle strikes goes as the density of SRAM, errors on memory sub-system will become a major concern as process technology scales. In this paper, we investigate the necessity of a fault-tolerant memory system, against such soft errors, in hardware accelerated neural network. We found that convolutional layers have different error tolerance from each other. The error tolerance of a layer tends to get worse as it goes on the output layer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信