SCIL纳米压印解决方案:用于低于10nm分辨率的晶圆级高容量软NIL

R. Voorkamp, M. Verschuuren, R. van Brakel
{"title":"SCIL纳米压印解决方案:用于低于10nm分辨率的晶圆级高容量软NIL","authors":"R. Voorkamp, M. Verschuuren, R. van Brakel","doi":"10.1117/12.2246787","DOIUrl":null,"url":null,"abstract":"Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 – 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and yield. Soft stamps, usually based on silicone rubber, behave fundamentally different compared to rigid stamps on the macro-, micro- and nanometer level. The main limitation of traditional silicones is that they are too soft to support sub-micron features against surface tension based stamp deformation and collapse [4] and handling a soft stamp to achieve accurate feature placement on wafer scales to allow overlay alignment with sub-100nm overlay accuracy.","PeriodicalId":287066,"journal":{"name":"European Mask and Lithography Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution\",\"authors\":\"R. Voorkamp, M. Verschuuren, R. van Brakel\",\"doi\":\"10.1117/12.2246787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 – 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and yield. Soft stamps, usually based on silicone rubber, behave fundamentally different compared to rigid stamps on the macro-, micro- and nanometer level. The main limitation of traditional silicones is that they are too soft to support sub-micron features against surface tension based stamp deformation and collapse [4] and handling a soft stamp to achieve accurate feature placement on wafer scales to allow overlay alignment with sub-100nm overlay accuracy.\",\"PeriodicalId\":287066,\"journal\":{\"name\":\"European Mask and Lithography Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Mask and Lithography Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2246787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Mask and Lithography Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2246787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

纳米图案材料和表面可以增加独特的功能和特性,这是在块状或微结构材料中无法获得的。从半导体纳米线的异质外延到引导细胞在医疗植入物上的表达和生长。[1]由于成本和吞吐量要求,传统的纳米图案技术,如深紫外光刻(成本和平面基板要求)和电子束光刻(成本,吞吐量)不是一个选择。自组装技术正被考虑用于集成电路制造,但需要纳米级的引导模式,这在任何情况下都必须制造此外,自组装过程对环境和层厚度高度敏感,这在PV硅片或III/V衬底等非平坦表面上难以控制。激光干涉光刻可以实现圆片尺度的周期性图案,但由于针孔处激光强度的限制,其吞吐量受到限制,而且由于干涉条件不能自由选择图案填充分数,只能实现规则图案纳米压印技术(NIL)是一种极具发展前景的技术,可在大面积上低成本地制作亚微米和纳米图案。NIL的挑战与技术相关,即接触方法,其中要求将持有图案的印章与产品表面密切接触。在NIL中,使用的图章类型有很大的区别,无论是刚性的还是软的。刚性邮票由图案硅,二氧化硅或塑料箔制成,具有低于10nm的分辨率和晶圆规模的图案。所有这些材料在微米到纳米尺度上表现相似,需要高压(5 - 50巴)才能在晶圆尺度上形成保形接触。现实世界的条件,如基板弯曲和颗粒污染物使晶圆规模区域的刚性印章的使用复杂化,减少印章的使用寿命和良率。软邮票,通常基于硅橡胶,与刚性邮票相比,在宏观、微观和纳米水平上表现出根本不同。传统有机硅的主要限制是,它们太软,无法支持亚微米特征,无法抵抗基于表面张力的印模变形和坍塌,也无法处理软印模,在晶圆尺度上实现精确的特征放置,从而实现低于100纳米的覆盖精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCIL nanoimprint solutions: high-volume soft NIL for wafer scale sub-10nm resolution
Nano-patterning materials and surfaces can add unique functionalities and properties which cannot be obtained in bulk or micro-structured materials. Examples range from hetro-epitaxy of semiconductor nano-wires to guiding cell expression and growth on medical implants. [1] Due to the cost and throughput requirements conventional nano-patterning techniques such as deep UV lithography (cost and flat substrate demands) and electron-beam lithography (cost, throughput) are not an option. Self-assembly techniques are being considered for IC manufacturing, but require nano-sized guiding patterns, which have to be fabricated in any case.[2] Additionally, the self-assembly process is highly sensitive to the environment and layer thickness, which is difficult to control on non-flat surfaces such as PV silicon wafers or III/V substrates. Laser interference lithography can achieve wafer scale periodic patterns, but is limited by the throughput due to intensity of the laser at the pinhole and only regular patterns are possible where the pattern fill fraction cannot be chosen freely due to the interference condition.[3] Nanoimprint lithography (NIL) is a promising technology for the cost effective fabrication of sub-micron and nano-patterns on large areas. The challenges for NIL are related to the technique being a contact method where a stamp which holds the patterns is required to be brought into intimate contact with the surface of the product. In NIL a strong distinction is made between the type of stamp used, either rigid or soft. Rigid stamps are made from patterned silicon, silica or plastic foils and are capable of sub-10nm resolution and wafer scale patterning. All these materials behave similar at the micro- to nm scale and require high pressures (5 – 50 Bar) to enable conformal contact to be made on wafer scales. Real world conditions such as substrate bow and particle contaminants complicate the use of rigid stamps for wafer scale areas, reducing stamp lifetime and yield. Soft stamps, usually based on silicone rubber, behave fundamentally different compared to rigid stamps on the macro-, micro- and nanometer level. The main limitation of traditional silicones is that they are too soft to support sub-micron features against surface tension based stamp deformation and collapse [4] and handling a soft stamp to achieve accurate feature placement on wafer scales to allow overlay alignment with sub-100nm overlay accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信