用户独立模式下的阿拉伯手语识别

T. Shanableh, K. Assaleh
{"title":"用户独立模式下的阿拉伯手语识别","authors":"T. Shanableh, K. Assaleh","doi":"10.1109/ICIAS.2007.4658457","DOIUrl":null,"url":null,"abstract":"In this paper we present a method for recognizing isolated Arabic sign language gestures in a user-independent mode. The proposed method requires that signers wear gloves to simplify the process of segmenting out the hands of the signer via color segmentation. The consecutive frame differences of the segmented signing hands are then thresholded and accumulated into two static images that preserve the motion information. Special accumulation strategy is employed to maintain the directionality of the projected motion. To filter out any other irrelevant source of motion in the resulting images we encapsulate the movements of the segmented hands in a bounding box. Bounded images are then transformed into the frequency domain using Discrete Cosine Transformation followed by zonal coding to form the feature vectors. The effectiveness of the proposed user-independent feature extraction scheme is assessed by two different classification techniques; namely, KNN and polynomial networks.","PeriodicalId":228083,"journal":{"name":"2007 International Conference on Intelligent and Advanced Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Arabic sign language recognition in user-independent mode\",\"authors\":\"T. Shanableh, K. Assaleh\",\"doi\":\"10.1109/ICIAS.2007.4658457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a method for recognizing isolated Arabic sign language gestures in a user-independent mode. The proposed method requires that signers wear gloves to simplify the process of segmenting out the hands of the signer via color segmentation. The consecutive frame differences of the segmented signing hands are then thresholded and accumulated into two static images that preserve the motion information. Special accumulation strategy is employed to maintain the directionality of the projected motion. To filter out any other irrelevant source of motion in the resulting images we encapsulate the movements of the segmented hands in a bounding box. Bounded images are then transformed into the frequency domain using Discrete Cosine Transformation followed by zonal coding to form the feature vectors. The effectiveness of the proposed user-independent feature extraction scheme is assessed by two different classification techniques; namely, KNN and polynomial networks.\",\"PeriodicalId\":228083,\"journal\":{\"name\":\"2007 International Conference on Intelligent and Advanced Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent and Advanced Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS.2007.4658457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent and Advanced Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS.2007.4658457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在本文中,我们提出了一种在用户独立模式下识别孤立阿拉伯手语手势的方法。该方法要求签名者戴上手套,简化了通过颜色分割分割出签名者手的过程。然后对分割后的手势连续帧差进行阈值处理,并将其累积成两幅静态图像,以保留动作信息。采用特殊的累积策略来保持投影运动的方向性。为了在生成的图像中过滤掉任何其他不相关的运动源,我们将分割的手的运动封装在一个边界框中。然后使用离散余弦变换将有界图像转换到频域,然后进行区域编码以形成特征向量。采用两种不同的分类技术对所提出的用户无关特征提取方案的有效性进行了评估;即KNN和多项式网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arabic sign language recognition in user-independent mode
In this paper we present a method for recognizing isolated Arabic sign language gestures in a user-independent mode. The proposed method requires that signers wear gloves to simplify the process of segmenting out the hands of the signer via color segmentation. The consecutive frame differences of the segmented signing hands are then thresholded and accumulated into two static images that preserve the motion information. Special accumulation strategy is employed to maintain the directionality of the projected motion. To filter out any other irrelevant source of motion in the resulting images we encapsulate the movements of the segmented hands in a bounding box. Bounded images are then transformed into the frequency domain using Discrete Cosine Transformation followed by zonal coding to form the feature vectors. The effectiveness of the proposed user-independent feature extraction scheme is assessed by two different classification techniques; namely, KNN and polynomial networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信