基于山聚类的模糊规则学习

R. Yager, Dimitar Filev
{"title":"基于山聚类的模糊规则学习","authors":"R. Yager, Dimitar Filev","doi":"10.1117/12.165030","DOIUrl":null,"url":null,"abstract":"The paper deals with a new approach to the learning of fuzzy rules. It suggests a solution to one of the problems of crucial importance for the learning of fuzzy rules by back propagation- -the issue of estimation of the initial values of the unknown parameters. We introduce the method of clustering via the mountain function to identify the most important rules. Those are the rules that are associated with higher values of the peaks of the mountain function. From the centers of the clusters that are obtained by the mountain function method are determined the initial estimates of the parameters of the reference antecedent and consequent fuzzy sets of the rules. In the next step the method of back propagation is used for more precise identification of those parameters.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.","PeriodicalId":417187,"journal":{"name":"Storage and Retrieval for Image and Video Databases","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Learning of Fuzzy Rules by Mountain Clustering\",\"authors\":\"R. Yager, Dimitar Filev\",\"doi\":\"10.1117/12.165030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper deals with a new approach to the learning of fuzzy rules. It suggests a solution to one of the problems of crucial importance for the learning of fuzzy rules by back propagation- -the issue of estimation of the initial values of the unknown parameters. We introduce the method of clustering via the mountain function to identify the most important rules. Those are the rules that are associated with higher values of the peaks of the mountain function. From the centers of the clusters that are obtained by the mountain function method are determined the initial estimates of the parameters of the reference antecedent and consequent fuzzy sets of the rules. In the next step the method of back propagation is used for more precise identification of those parameters.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.\",\"PeriodicalId\":417187,\"journal\":{\"name\":\"Storage and Retrieval for Image and Video Databases\",\"volume\":\"301 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Storage and Retrieval for Image and Video Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.165030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Storage and Retrieval for Image and Video Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.165030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

摘要

本文提出了一种新的模糊规则学习方法。针对模糊规则反向传播学习中的一个关键问题——未知参数初值的估计问题,提出了一种解决方案。我们引入了通过山函数聚类的方法来识别最重要的规则。这些是与山函数的峰值值较高相关的规则。由山函数法得到的聚类中心确定规则的参考前、后模糊集参数的初始估计。在下一步中,使用反向传播方法对这些参数进行更精确的识别。©(1993)版权所有SPIE—国际光学工程学会。下载摘要仅供个人使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning of Fuzzy Rules by Mountain Clustering
The paper deals with a new approach to the learning of fuzzy rules. It suggests a solution to one of the problems of crucial importance for the learning of fuzzy rules by back propagation- -the issue of estimation of the initial values of the unknown parameters. We introduce the method of clustering via the mountain function to identify the most important rules. Those are the rules that are associated with higher values of the peaks of the mountain function. From the centers of the clusters that are obtained by the mountain function method are determined the initial estimates of the parameters of the reference antecedent and consequent fuzzy sets of the rules. In the next step the method of back propagation is used for more precise identification of those parameters.© (1993) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信