{"title":"使用增量精度和多级分类的物联网应用线性分类器的低能耗架构","authors":"Sandhya Koteshwara, K. Parhi","doi":"10.1145/3194554.3194603","DOIUrl":null,"url":null,"abstract":"This paper presents a novel incremental-precision classification approach that leads to a reduction in energy consumption of linear classifiers for IoT applications. Features are first input to a low-precision classifier. If the classifier successfully classifies the sample, then the process terminates. Otherwise, the classification performance is incrementally improved by using a classifier of higher precision. This process is repeated until the classification is complete. The argument is that many samples can be classified using the low-precision classifier, leading to a reduction in energy. To achieve incremental-precision, a novel data-path decomposition is proposed to design of fixed-width adders and multipliers. These components improve the precision without recalculating the outputs, thus reducing energy. Using a linear classification example, it is shown that the proposed incremental-precision based multi-level classifier approach can reduce energy by about 41% while achieving comparable accuracies as that of a full-precision system.","PeriodicalId":215940,"journal":{"name":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","volume":"975 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Energy Architectures of Linear Classifiers for IoT Applications using Incremental Precision and Multi-Level Classification\",\"authors\":\"Sandhya Koteshwara, K. Parhi\",\"doi\":\"10.1145/3194554.3194603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel incremental-precision classification approach that leads to a reduction in energy consumption of linear classifiers for IoT applications. Features are first input to a low-precision classifier. If the classifier successfully classifies the sample, then the process terminates. Otherwise, the classification performance is incrementally improved by using a classifier of higher precision. This process is repeated until the classification is complete. The argument is that many samples can be classified using the low-precision classifier, leading to a reduction in energy. To achieve incremental-precision, a novel data-path decomposition is proposed to design of fixed-width adders and multipliers. These components improve the precision without recalculating the outputs, thus reducing energy. Using a linear classification example, it is shown that the proposed incremental-precision based multi-level classifier approach can reduce energy by about 41% while achieving comparable accuracies as that of a full-precision system.\",\"PeriodicalId\":215940,\"journal\":{\"name\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"volume\":\"975 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194554.3194603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194554.3194603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Energy Architectures of Linear Classifiers for IoT Applications using Incremental Precision and Multi-Level Classification
This paper presents a novel incremental-precision classification approach that leads to a reduction in energy consumption of linear classifiers for IoT applications. Features are first input to a low-precision classifier. If the classifier successfully classifies the sample, then the process terminates. Otherwise, the classification performance is incrementally improved by using a classifier of higher precision. This process is repeated until the classification is complete. The argument is that many samples can be classified using the low-precision classifier, leading to a reduction in energy. To achieve incremental-precision, a novel data-path decomposition is proposed to design of fixed-width adders and multipliers. These components improve the precision without recalculating the outputs, thus reducing energy. Using a linear classification example, it is shown that the proposed incremental-precision based multi-level classifier approach can reduce energy by about 41% while achieving comparable accuracies as that of a full-precision system.