非均匀二维导电体的电阻边界

I. Ecsedi, A. Baksa
{"title":"非均匀二维导电体的电阻边界","authors":"I. Ecsedi, A. Baksa","doi":"10.37394/232027.2022.4.11","DOIUrl":null,"url":null,"abstract":"A mathematical model is developed to determine the steady-state current flow through in non-homogeneous isotropic conductor whose shape is a two-dimensional hollow domain. The corresponding electric boundary value problem is formulated using Maxwell's theory of electricity. The determination of the two-dimensional motion of charges is based on the concept of the electrical conductance. The Cauchy-Schwarz inequality is used to get the lower and upper bounds for the electrical conductance. The derived upper and lower bound formulae are illustrated by numerical examples.","PeriodicalId":145183,"journal":{"name":"International Journal of Electrical Engineering and Computer Science","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for the Electrical Resistance for Non-homogeneous Two-dimensional Conducting Body\",\"authors\":\"I. Ecsedi, A. Baksa\",\"doi\":\"10.37394/232027.2022.4.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model is developed to determine the steady-state current flow through in non-homogeneous isotropic conductor whose shape is a two-dimensional hollow domain. The corresponding electric boundary value problem is formulated using Maxwell's theory of electricity. The determination of the two-dimensional motion of charges is based on the concept of the electrical conductance. The Cauchy-Schwarz inequality is used to get the lower and upper bounds for the electrical conductance. The derived upper and lower bound formulae are illustrated by numerical examples.\",\"PeriodicalId\":145183,\"journal\":{\"name\":\"International Journal of Electrical Engineering and Computer Science\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Engineering and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232027.2022.4.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Engineering and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232027.2022.4.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立了非均匀各向同性二维空心畴导体中稳态电流流动的数学模型。利用麦克斯韦电学理论,提出了相应的电边值问题。电荷二维运动的确定是基于电导的概念。利用柯西-施瓦茨不等式求出电导率的下界和上界。通过数值算例说明了推导出的上界和下界公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for the Electrical Resistance for Non-homogeneous Two-dimensional Conducting Body
A mathematical model is developed to determine the steady-state current flow through in non-homogeneous isotropic conductor whose shape is a two-dimensional hollow domain. The corresponding electric boundary value problem is formulated using Maxwell's theory of electricity. The determination of the two-dimensional motion of charges is based on the concept of the electrical conductance. The Cauchy-Schwarz inequality is used to get the lower and upper bounds for the electrical conductance. The derived upper and lower bound formulae are illustrated by numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信