关于奇阶多阶Hadamard矩阵的存在性

Q. K. Trinh, P. Fan, E. Gabidulin, R. N. Mohan
{"title":"关于奇阶多阶Hadamard矩阵的存在性","authors":"Q. K. Trinh, P. Fan, E. Gabidulin, R. N. Mohan","doi":"10.1109/IWSDA.2007.4408339","DOIUrl":null,"url":null,"abstract":"The multilevel (n-ary) Hadamard matrices, which are related to orthogonal matrices or orthogonal designs, are investigated in this paper. It is assumed that all matrix elements are integers, which make the binary Hadamard matrices as special cases of multilevel (n-ary) Hadamard matrices. It is shown that the multilevel Hadamard matrices of odd order do exist if only two different matrix elements are contained; but, except an unknown case, multilevel (n-ary) Hadamard matrices of odd order do not exist when all matrix elements are successive integers.","PeriodicalId":303512,"journal":{"name":"2007 3rd International Workshop on Signal Design and Its Applications in Communications","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the Existence of Multilevel Hadamard Matrices with Odd Order\",\"authors\":\"Q. K. Trinh, P. Fan, E. Gabidulin, R. N. Mohan\",\"doi\":\"10.1109/IWSDA.2007.4408339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multilevel (n-ary) Hadamard matrices, which are related to orthogonal matrices or orthogonal designs, are investigated in this paper. It is assumed that all matrix elements are integers, which make the binary Hadamard matrices as special cases of multilevel (n-ary) Hadamard matrices. It is shown that the multilevel Hadamard matrices of odd order do exist if only two different matrix elements are contained; but, except an unknown case, multilevel (n-ary) Hadamard matrices of odd order do not exist when all matrix elements are successive integers.\",\"PeriodicalId\":303512,\"journal\":{\"name\":\"2007 3rd International Workshop on Signal Design and Its Applications in Communications\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International Workshop on Signal Design and Its Applications in Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2007.4408339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International Workshop on Signal Design and Its Applications in Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2007.4408339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了与正交矩阵或正交设计有关的多层(n元)Hadamard矩阵。假定所有的矩阵元素都是整数,这使得二元Hadamard矩阵成为多层(n-ary) Hadamard矩阵的特殊情况。证明了当只包含两个不同的矩阵元素时,存在奇阶的多级Hadamard矩阵;但是,除未知情况外,当所有矩阵元素为连续整数时,不存在奇数阶的多级(n-ary) Hadamard矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Existence of Multilevel Hadamard Matrices with Odd Order
The multilevel (n-ary) Hadamard matrices, which are related to orthogonal matrices or orthogonal designs, are investigated in this paper. It is assumed that all matrix elements are integers, which make the binary Hadamard matrices as special cases of multilevel (n-ary) Hadamard matrices. It is shown that the multilevel Hadamard matrices of odd order do exist if only two different matrix elements are contained; but, except an unknown case, multilevel (n-ary) Hadamard matrices of odd order do not exist when all matrix elements are successive integers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信