基于多输出支持向量回归的应急人员伤亡预测

Zhao Yibing, Gao Hongni, Feng Shao-bo
{"title":"基于多输出支持向量回归的应急人员伤亡预测","authors":"Zhao Yibing, Gao Hongni, Feng Shao-bo","doi":"10.1109/ANTHOLOGY.2013.6785024","DOIUrl":null,"url":null,"abstract":"The frequent emergencies have inflicted the huge casualties and property losses. In the recent years, the casualty prediction models which some domestic scholars have established are mostly consist of a single factor or a small number of factors. In this paper, multi-output support vector regression is applied to respectively predict personnel mortality and injury rates on the former and the basis of considering a variety of factors. The meaning is to provide the scientific basis of rescue operations.","PeriodicalId":203169,"journal":{"name":"IEEE Conference Anthology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Based on multi-outputs support vector regression emergency casualties prediction\",\"authors\":\"Zhao Yibing, Gao Hongni, Feng Shao-bo\",\"doi\":\"10.1109/ANTHOLOGY.2013.6785024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frequent emergencies have inflicted the huge casualties and property losses. In the recent years, the casualty prediction models which some domestic scholars have established are mostly consist of a single factor or a small number of factors. In this paper, multi-output support vector regression is applied to respectively predict personnel mortality and injury rates on the former and the basis of considering a variety of factors. The meaning is to provide the scientific basis of rescue operations.\",\"PeriodicalId\":203169,\"journal\":{\"name\":\"IEEE Conference Anthology\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference Anthology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANTHOLOGY.2013.6785024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference Anthology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTHOLOGY.2013.6785024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

频繁发生的突发事件造成了巨大的人员伤亡和财产损失。近年来,国内一些学者建立的伤亡预测模型多由单一因素或少数因素组成。本文在综合考虑多种因素的基础上,采用多输出支持向量回归分别对人员死亡率和伤害率进行预测。其意义在于为救援行动提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Based on multi-outputs support vector regression emergency casualties prediction
The frequent emergencies have inflicted the huge casualties and property losses. In the recent years, the casualty prediction models which some domestic scholars have established are mostly consist of a single factor or a small number of factors. In this paper, multi-output support vector regression is applied to respectively predict personnel mortality and injury rates on the former and the basis of considering a variety of factors. The meaning is to provide the scientific basis of rescue operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信