1/4-/spl mu/m极栅超薄膜mosfet /SIMOX低阻源极/漏极特性

Y. Sato, T. Tsuchiya, T. Kosugi, H. Ishii
{"title":"1/4-/spl mu/m极栅超薄膜mosfet /SIMOX低阻源极/漏极特性","authors":"Y. Sato, T. Tsuchiya, T. Kosugi, H. Ishii","doi":"10.1109/SOI.1995.526444","DOIUrl":null,"url":null,"abstract":"Compared with partially depleted SOI devices, fully depleted (FD) devices have great potential for low-power high-speed ULSIs because of their advantages such as increased current drivability, excellent subthreshold slope and no kink effect. However, there are two major problems to be solved with 1/4-/spl mu/m level gate devices: one is high source/drain sheet resistance associated with an ultrathin SOI film in both NMOS and PMOS, and the other is low source/drain breakdown voltage induced by parasitic bipolar action in NMOS. In this paper, it will be demonstrated that both can be improved by a self-aligned tungsten (W) layer on the source/drain in ultrathin-film (50-nm) MOSFETs/SIMOX, and the hot-carrier immunity of such devices is shown. We confirmed that the W-layer formation does not cause any changes in PMOS characteristics except a reduction of source/drain sheet resistance, so we describe results in NMOSFETs.","PeriodicalId":149490,"journal":{"name":"1995 IEEE International SOI Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characteristics of 1/4-/spl mu/m gate ultrathin-film MOSFETs/SIMOX with tungsten-deposited low-resistance source/drain\",\"authors\":\"Y. Sato, T. Tsuchiya, T. Kosugi, H. Ishii\",\"doi\":\"10.1109/SOI.1995.526444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with partially depleted SOI devices, fully depleted (FD) devices have great potential for low-power high-speed ULSIs because of their advantages such as increased current drivability, excellent subthreshold slope and no kink effect. However, there are two major problems to be solved with 1/4-/spl mu/m level gate devices: one is high source/drain sheet resistance associated with an ultrathin SOI film in both NMOS and PMOS, and the other is low source/drain breakdown voltage induced by parasitic bipolar action in NMOS. In this paper, it will be demonstrated that both can be improved by a self-aligned tungsten (W) layer on the source/drain in ultrathin-film (50-nm) MOSFETs/SIMOX, and the hot-carrier immunity of such devices is shown. We confirmed that the W-layer formation does not cause any changes in PMOS characteristics except a reduction of source/drain sheet resistance, so we describe results in NMOSFETs.\",\"PeriodicalId\":149490,\"journal\":{\"name\":\"1995 IEEE International SOI Conference Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 IEEE International SOI Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOI.1995.526444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 IEEE International SOI Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1995.526444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

与部分耗尽的SOI器件相比,完全耗尽(FD)器件由于具有提高电流驱动性、优异的亚阈值斜率和无扭结效应等优点,在低功耗高速ulsi中具有很大的潜力。然而,1/4-/spl mu/m级栅极器件需要解决两个主要问题:一个是NMOS和PMOS中超薄SOI膜相关的高源/漏极电阻,另一个是NMOS中寄生双极作用引起的低源/漏击穿电压。本文将证明,在超薄膜(50纳米)mosfet /SIMOX的源极/漏极上自向钨(W)层可以改善这两种情况,并展示了这种器件的热载流子抗扰性。我们证实,w层的形成除了降低源极/漏极电阻外,不会导致PMOS特性的任何变化,因此我们描述了nmosfet的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characteristics of 1/4-/spl mu/m gate ultrathin-film MOSFETs/SIMOX with tungsten-deposited low-resistance source/drain
Compared with partially depleted SOI devices, fully depleted (FD) devices have great potential for low-power high-speed ULSIs because of their advantages such as increased current drivability, excellent subthreshold slope and no kink effect. However, there are two major problems to be solved with 1/4-/spl mu/m level gate devices: one is high source/drain sheet resistance associated with an ultrathin SOI film in both NMOS and PMOS, and the other is low source/drain breakdown voltage induced by parasitic bipolar action in NMOS. In this paper, it will be demonstrated that both can be improved by a self-aligned tungsten (W) layer on the source/drain in ultrathin-film (50-nm) MOSFETs/SIMOX, and the hot-carrier immunity of such devices is shown. We confirmed that the W-layer formation does not cause any changes in PMOS characteristics except a reduction of source/drain sheet resistance, so we describe results in NMOSFETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信