移动应用软件缺陷预测

M. Ricky, Fredy Purnomo, B. Yulianto
{"title":"移动应用软件缺陷预测","authors":"M. Ricky, Fredy Purnomo, B. Yulianto","doi":"10.1109/SOSE.2016.25","DOIUrl":null,"url":null,"abstract":"The increasing number of user of mobile application, it is needed to check mobile applications that contains defect or not. I proposed a SVM method in comparison with CART and Test Metrics to classify classes in application. It shows that SVM method has better result in terms of precision and accuracy. SVM accuracy reaches 83% compared with CART and Test Metrics method in mobile apps defect prediction.","PeriodicalId":153118,"journal":{"name":"2016 IEEE Symposium on Service-Oriented System Engineering (SOSE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Mobile Application Software Defect Prediction\",\"authors\":\"M. Ricky, Fredy Purnomo, B. Yulianto\",\"doi\":\"10.1109/SOSE.2016.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of user of mobile application, it is needed to check mobile applications that contains defect or not. I proposed a SVM method in comparison with CART and Test Metrics to classify classes in application. It shows that SVM method has better result in terms of precision and accuracy. SVM accuracy reaches 83% compared with CART and Test Metrics method in mobile apps defect prediction.\",\"PeriodicalId\":153118,\"journal\":{\"name\":\"2016 IEEE Symposium on Service-Oriented System Engineering (SOSE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on Service-Oriented System Engineering (SOSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOSE.2016.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Service-Oriented System Engineering (SOSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOSE.2016.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

随着移动应用用户的不断增加,需要对移动应用是否存在缺陷进行检查。对比CART和Test Metrics,提出了一种SVM方法对应用中的类进行分类。结果表明,支持向量机方法在精度和准确度方面都有较好的效果。与CART和Test Metrics方法相比,SVM在移动应用缺陷预测中的准确率达到83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile Application Software Defect Prediction
The increasing number of user of mobile application, it is needed to check mobile applications that contains defect or not. I proposed a SVM method in comparison with CART and Test Metrics to classify classes in application. It shows that SVM method has better result in terms of precision and accuracy. SVM accuracy reaches 83% compared with CART and Test Metrics method in mobile apps defect prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信