{"title":"在智能制造中利用物联网数据和知识","authors":"Joseph S. M. Yuen, K. Choy, Y. Tsang, H. Y. Lam","doi":"10.5772/intechopen.86293","DOIUrl":null,"url":null,"abstract":"In the modern digitalized era, the use of electronic devices is a necessity in daily life, with most end users requiring high product quality of these devices. During the electronics manufacturing process, environmental control, for monitoring ambient temperature and relative humidity, is one of the critical elements affecting product quality. However, the manufacturing process is complicated and involves numerous sections, such as processing workshops and storage facilities. Each section has its own specific requirements for environmental conditions, which are checked regularly and manually, such that the whole environmental control process becomes time-consuming and inefficient. In addition, the reporting mechanism when conditions are out of specification is done manually at regular intervals, resulting in a certain likelihood of serious quality deviation. There is a substantial need for improving knowledge management under smart manufacturing for full integration of Internet of Things (IoT) data and manufacturing knowledge. In this chapter, an Internet-of-Things Quality Prediction System (IQPS), which is a mission critical system in electronics manufacturing, is proposed in adopting the advanced IoT technologies to develop a real-time environmental monitoring scheme in electronics manufacturing. By deploying IQPS, the total intelligent environmental monitoring is achieved, while product quality is predicted in a systematic manner.","PeriodicalId":187774,"journal":{"name":"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing IoT Data and Knowledge in Smart Manufacturing\",\"authors\":\"Joseph S. M. Yuen, K. Choy, Y. Tsang, H. Y. Lam\",\"doi\":\"10.5772/intechopen.86293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the modern digitalized era, the use of electronic devices is a necessity in daily life, with most end users requiring high product quality of these devices. During the electronics manufacturing process, environmental control, for monitoring ambient temperature and relative humidity, is one of the critical elements affecting product quality. However, the manufacturing process is complicated and involves numerous sections, such as processing workshops and storage facilities. Each section has its own specific requirements for environmental conditions, which are checked regularly and manually, such that the whole environmental control process becomes time-consuming and inefficient. In addition, the reporting mechanism when conditions are out of specification is done manually at regular intervals, resulting in a certain likelihood of serious quality deviation. There is a substantial need for improving knowledge management under smart manufacturing for full integration of Internet of Things (IoT) data and manufacturing knowledge. In this chapter, an Internet-of-Things Quality Prediction System (IQPS), which is a mission critical system in electronics manufacturing, is proposed in adopting the advanced IoT technologies to develop a real-time environmental monitoring scheme in electronics manufacturing. By deploying IQPS, the total intelligent environmental monitoring is achieved, while product quality is predicted in a systematic manner.\",\"PeriodicalId\":187774,\"journal\":{\"name\":\"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.86293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.86293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harnessing IoT Data and Knowledge in Smart Manufacturing
In the modern digitalized era, the use of electronic devices is a necessity in daily life, with most end users requiring high product quality of these devices. During the electronics manufacturing process, environmental control, for monitoring ambient temperature and relative humidity, is one of the critical elements affecting product quality. However, the manufacturing process is complicated and involves numerous sections, such as processing workshops and storage facilities. Each section has its own specific requirements for environmental conditions, which are checked regularly and manually, such that the whole environmental control process becomes time-consuming and inefficient. In addition, the reporting mechanism when conditions are out of specification is done manually at regular intervals, resulting in a certain likelihood of serious quality deviation. There is a substantial need for improving knowledge management under smart manufacturing for full integration of Internet of Things (IoT) data and manufacturing knowledge. In this chapter, an Internet-of-Things Quality Prediction System (IQPS), which is a mission critical system in electronics manufacturing, is proposed in adopting the advanced IoT technologies to develop a real-time environmental monitoring scheme in electronics manufacturing. By deploying IQPS, the total intelligent environmental monitoring is achieved, while product quality is predicted in a systematic manner.