从复合介质细观力学角度看c-s-h的结构形成

R. Fedyuk, Dongik Yoo
{"title":"从复合介质细观力学角度看c-s-h的结构形成","authors":"R. Fedyuk, Dongik Yoo","doi":"10.34031/2618-7183-2021-4-5-5-15","DOIUrl":null,"url":null,"abstract":"the creation of an environmentally friendly building material to protect the human environment can only be carried out from the position of a transdisciplinarity approach, taking into account modern achievements in geomimetics and micromechanics of composite media. A wide range of basalt-fiber-reinforced concrete based on composite binders has been developed, which have increased characteristics of impermeability and durability under extreme operating conditions. The nature of the influence of the composition and manufacturing technology of cement composites on the pore structure of the composite has been established, which has a positive effect on the charac-teristics of gas, water and vapor permeability. High early strength was obtained, which allows the use of materials for operational repair and construction in emergency situations. The positive influence of the composition of the developed composite on the performances has been proved. The water resistance of the modified composite provides a water pressure of 2 MPa for 148 hours, which corresponds to the W18 grade (for the control sample – W8), the frost resistance grade – F300. It was found that the water absorption of the modified concrete samples was lower than that of the control sample, which is explained by the decrease in the pore structure index λ by 28.4 times, and the average pore diameter by 3.05 times. The total pore volume of the modified concrete was lower and decreased with increasing dose of nanosilica.","PeriodicalId":127090,"journal":{"name":"Construction Materials and Products","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STRUCTURE FORMATION OF C-S-H FROM THE POSITION OF MICROMECHANICS OF COMPOSITE MEDIA\",\"authors\":\"R. Fedyuk, Dongik Yoo\",\"doi\":\"10.34031/2618-7183-2021-4-5-5-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"the creation of an environmentally friendly building material to protect the human environment can only be carried out from the position of a transdisciplinarity approach, taking into account modern achievements in geomimetics and micromechanics of composite media. A wide range of basalt-fiber-reinforced concrete based on composite binders has been developed, which have increased characteristics of impermeability and durability under extreme operating conditions. The nature of the influence of the composition and manufacturing technology of cement composites on the pore structure of the composite has been established, which has a positive effect on the charac-teristics of gas, water and vapor permeability. High early strength was obtained, which allows the use of materials for operational repair and construction in emergency situations. The positive influence of the composition of the developed composite on the performances has been proved. The water resistance of the modified composite provides a water pressure of 2 MPa for 148 hours, which corresponds to the W18 grade (for the control sample – W8), the frost resistance grade – F300. It was found that the water absorption of the modified concrete samples was lower than that of the control sample, which is explained by the decrease in the pore structure index λ by 28.4 times, and the average pore diameter by 3.05 times. The total pore volume of the modified concrete was lower and decreased with increasing dose of nanosilica.\",\"PeriodicalId\":127090,\"journal\":{\"name\":\"Construction Materials and Products\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Materials and Products\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34031/2618-7183-2021-4-5-5-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Materials and Products","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34031/2618-7183-2021-4-5-5-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

创造一种环境友好的建筑材料来保护人类环境只能从跨学科的角度进行,考虑到复合介质的几何和微观力学的现代成就。基于复合粘结剂的玄武岩纤维增强混凝土已经得到了广泛的开发,它在极端工作条件下具有更高的抗渗性能和耐久性。确立了水泥复合材料的组成和制造工艺对复合材料孔隙结构影响的性质,对其气、水、汽渗透特性有积极的影响。获得了很高的早期强度,因此可以在紧急情况下使用材料进行作业修理和施工。所研制的复合材料的组成对性能有积极的影响。改性复合材料的耐水性为2mpa,耐水时间为148小时,对应W18等级(对照样品为W8),抗冻等级为F300。结果表明,改性后的混凝土吸水率低于对照,其孔隙结构指数λ减小了28.4倍,平均孔径减小了3.05倍。随着纳米二氧化硅用量的增加,改性混凝土的总孔体积减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STRUCTURE FORMATION OF C-S-H FROM THE POSITION OF MICROMECHANICS OF COMPOSITE MEDIA
the creation of an environmentally friendly building material to protect the human environment can only be carried out from the position of a transdisciplinarity approach, taking into account modern achievements in geomimetics and micromechanics of composite media. A wide range of basalt-fiber-reinforced concrete based on composite binders has been developed, which have increased characteristics of impermeability and durability under extreme operating conditions. The nature of the influence of the composition and manufacturing technology of cement composites on the pore structure of the composite has been established, which has a positive effect on the charac-teristics of gas, water and vapor permeability. High early strength was obtained, which allows the use of materials for operational repair and construction in emergency situations. The positive influence of the composition of the developed composite on the performances has been proved. The water resistance of the modified composite provides a water pressure of 2 MPa for 148 hours, which corresponds to the W18 grade (for the control sample – W8), the frost resistance grade – F300. It was found that the water absorption of the modified concrete samples was lower than that of the control sample, which is explained by the decrease in the pore structure index λ by 28.4 times, and the average pore diameter by 3.05 times. The total pore volume of the modified concrete was lower and decreased with increasing dose of nanosilica.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信