{"title":"具有参数不确定性的自由漂浮机器人抓取翻滚目标的阻抗控制","authors":"S. Abiko, R. Lampariello, G. Hirzinger","doi":"10.1109/IROS.2006.281785","DOIUrl":null,"url":null,"abstract":"This paper addresses an impedance control for a free-floating space robot in the grasping of a tumbling target with model uncertainty. Firstly, the operational space dynamics for a free-floating robot is derived with a novel, computationally efficient formulation. Then, considering the grasped target as a disturbance force on the end-effector, the proposed control method is completely independent of the target inertial parameters and the end-effector can follow a given trajectory in the presence of model uncertainty. To verify the effectiveness of the proposed method, a three-dimensional realistic numerical simulation is carried out","PeriodicalId":237562,"journal":{"name":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Impedance Control for a Free-Floating Robot in the Grasping of a Tumbling Target with Parameter Uncertainty\",\"authors\":\"S. Abiko, R. Lampariello, G. Hirzinger\",\"doi\":\"10.1109/IROS.2006.281785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses an impedance control for a free-floating space robot in the grasping of a tumbling target with model uncertainty. Firstly, the operational space dynamics for a free-floating robot is derived with a novel, computationally efficient formulation. Then, considering the grasped target as a disturbance force on the end-effector, the proposed control method is completely independent of the target inertial parameters and the end-effector can follow a given trajectory in the presence of model uncertainty. To verify the effectiveness of the proposed method, a three-dimensional realistic numerical simulation is carried out\",\"PeriodicalId\":237562,\"journal\":{\"name\":\"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2006.281785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2006.281785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impedance Control for a Free-Floating Robot in the Grasping of a Tumbling Target with Parameter Uncertainty
This paper addresses an impedance control for a free-floating space robot in the grasping of a tumbling target with model uncertainty. Firstly, the operational space dynamics for a free-floating robot is derived with a novel, computationally efficient formulation. Then, considering the grasped target as a disturbance force on the end-effector, the proposed control method is completely independent of the target inertial parameters and the end-effector can follow a given trajectory in the presence of model uncertainty. To verify the effectiveness of the proposed method, a three-dimensional realistic numerical simulation is carried out