使用深度强化学习的低成本相机的移动机器人规划器

M. Tran, N. Ly
{"title":"使用深度强化学习的低成本相机的移动机器人规划器","authors":"M. Tran, N. Ly","doi":"10.1109/NICS51282.2020.9335852","DOIUrl":null,"url":null,"abstract":"This study develops a robot mobility policy based on deep reinforcement learning. Since traditional methods of conventional robotic navigation depend on accurate map reproduction as well as require high-end sensors, learning-based methods are positive trends, especially deep reinforcement learning. The problem is modeled in the form of a Markov Decision Process (MDP) with the agent being a mobile robot. Its state of view is obtained by the input sensors such as laser findings or cameras and the purpose is navigating to the goal without any collision. There have been many deep learning methods that solve this problem. However, in order to bring robots to market, low-cost mass production is also an issue that needs to be addressed. Therefore, this work attempts to construct a pseudo laser findings system based on direct depth matrix prediction from a single camera image while still retaining stable performances. Experiment results show that they are directly comparable with others using high-priced sensors.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mobile Robot Planner with Low-cost Cameras Using Deep Reinforcement Learning\",\"authors\":\"M. Tran, N. Ly\",\"doi\":\"10.1109/NICS51282.2020.9335852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study develops a robot mobility policy based on deep reinforcement learning. Since traditional methods of conventional robotic navigation depend on accurate map reproduction as well as require high-end sensors, learning-based methods are positive trends, especially deep reinforcement learning. The problem is modeled in the form of a Markov Decision Process (MDP) with the agent being a mobile robot. Its state of view is obtained by the input sensors such as laser findings or cameras and the purpose is navigating to the goal without any collision. There have been many deep learning methods that solve this problem. However, in order to bring robots to market, low-cost mass production is also an issue that needs to be addressed. Therefore, this work attempts to construct a pseudo laser findings system based on direct depth matrix prediction from a single camera image while still retaining stable performances. Experiment results show that they are directly comparable with others using high-priced sensors.\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究开发了一种基于深度强化学习的机器人移动策略。由于传统的机器人导航方法依赖于精确的地图复制,并且需要高端传感器,基于学习的方法是积极的趋势,尤其是深度强化学习。该问题以马尔可夫决策过程(MDP)的形式建模,agent为移动机器人。它的视野状态由输入传感器(如激光探测或摄像头)获得,目的是在不发生碰撞的情况下导航到目标。已经有很多深度学习方法可以解决这个问题。然而,为了将机器人推向市场,低成本的大规模生产也是一个需要解决的问题。因此,本工作试图构建一个基于单相机图像直接深度矩阵预测的伪激光发现系统,同时仍保持稳定的性能。实验结果表明,它们与其他使用高价传感器的传感器具有直接可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mobile Robot Planner with Low-cost Cameras Using Deep Reinforcement Learning
This study develops a robot mobility policy based on deep reinforcement learning. Since traditional methods of conventional robotic navigation depend on accurate map reproduction as well as require high-end sensors, learning-based methods are positive trends, especially deep reinforcement learning. The problem is modeled in the form of a Markov Decision Process (MDP) with the agent being a mobile robot. Its state of view is obtained by the input sensors such as laser findings or cameras and the purpose is navigating to the goal without any collision. There have been many deep learning methods that solve this problem. However, in order to bring robots to market, low-cost mass production is also an issue that needs to be addressed. Therefore, this work attempts to construct a pseudo laser findings system based on direct depth matrix prediction from a single camera image while still retaining stable performances. Experiment results show that they are directly comparable with others using high-priced sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信